ترغب بنشر مسار تعليمي؟ اضغط هنا

Suppression of Coulomb exchange energy in quasi-two-dimensional hole systems

219   0   0.0 ( 0 )
 نشر من قبل Ulrich Zuelicke
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. Kernreiter




اسأل ChatGPT حول البحث

We have calculated the exchange-energy contribution to the total energy of quasi-two-dimensional hole systems realized by a hard-wall quantum-well confinement of valence-band states in typical semiconductors. The magnitude of the exchange energy turns out to be suppressed from the value expected for analogous conduction-band systems whenever the mixing between heavy-hole and light-hole components is strong. Our results are obtained using a very general formalism for calculating the exchange energy of many-particle systems where single-particle states are spinors. We have applied this formalism to obtain analytical results for spin-3/2 hole systems in limiting cases.

قيم البحث

اقرأ أيضاً

99 - M. Kugler , T. Andlauer , T. Korn 2009
We have investigated spin and carrier dynamics of resident holes in high-mobility two-dimensional hole systems in GaAs/Al$_{0.3}$Ga$_{0.7}$As single quantum wells at temperatures down to 400 mK. Time-resolved Faraday and Kerr rotation, as well as tim e-resolved photoluminescence spectroscopy are utilized in our study. We observe long-lived hole spin dynamics that are strongly temperature dependent, indicating that in-plane localization is crucial for hole spin coherence. By applying a gate voltage, we are able to tune the observed hole g factor by more than 50 percent. Calculations of the hole g tensor as a function of the applied bias show excellent agreement with our experimental findings.
178 - T. Korn , M. Kugler , M. Griesbeck 2009
For the realisation of scalable solid-state quantum-bit systems, spins in semiconductor quantum dots are promising candidates. A key requirement for quantum logic operations is a sufficiently long coherence time of the spin system. Recently, hole spi ns in III-V-based quantum dots were discussed as alternatives to electron spins, since the hole spin, in contrast to the electron spin, is not affected by contact hyperfine interaction with the nuclear spins. Here, we report a breakthrough in the spin coherence times of hole ensembles, confined in so called natural quantum dots, in narrow GaAs/AlGaAs quantum wells at temperatures below 500 mK. Consistently, time-resolved Faraday rotation and resonant spin amplification techniques deliver hole-spin coherence times, which approach in the low magnetic field limit values above 70 ns. The optical initialisation of the hole spin polarisation, as well as the interconnected electron and hole spin dynamics in our samples are well reproduced using a rate equation model.
Magnetism in recently discovered van der Waals materials has opened new avenues in the study of fundamental spin interactions in truly two-dimensions. A paramount question is what effect higher-order interactions beyond bilinear Heisenberg exchange h ave on the magnetic properties of few-atom thick compounds. Here we demonstrate that biquadratic exchange interactions, which is the simplest and most natural form of non-Heisenberg coupling, assume a key role in the magnetic properties of layered magnets. Using a combination of nonperturbative analytical techniques, non-collinear first-principles methods and classical Monte Carlo calculations that incorporate higher-order exchange, we show that several quantities including magnetic anisotropies, spin-wave gaps and topological spin-excitations are intrinsically renormalized leading to further thermal stability of the layers. We develop a spin Hamiltonian that also contains antisymmetric exchanges (e.g. Dzyaloshinskii-Moriya interactions) to successfully rationalize numerous observations currently under debate, such as the non-Ising character of several compounds despite a strong magnetic anisotropy, peculiarities of the magnon spectrum of 2D magnets, and the discrepancy between measured and calculated Curie temperatures. Our results lay the foundation of a universal higher-order exchange theory for novel 2D magnetic design strategies.
A stable skyrmion, representing the smallest realizable magnetic texture, could be an ideal element for ultra-dense magnetic memories. Here, we review recent progress in the field of skyrmionics, which is concerned with studies of tiny whirls of magn etic configurations for novel memory and logic applications, with a particular emphasis on antiskyrmions. Magnetic antiskyrmions represent analogs of skyrmions with opposite topological charge. Just like skyrmions, antiskyrmions can be stabilized by the Dzyaloshinskii-Moriya interaction, as has been demonstrated in a recent experiment. Here, we emphasize differences between skyrmions and antiskyrmions, e.g., in the context of the topological Hall effect, skyrmion Hall effect, as well as nucleation and stability. Recent progress suggests that anitskyrmions can be potentially useful for many device applications. Antiskyrmions offer advantages over skyrmions as they can be driven without the Hall-like motion, offer increased stability due to dipolar interactions, and can be realized above room temperature.
Coulomb interactions play an essential role in atomically-thin materials. On one hand, they are strong and long-ranged in layered systems due to the lack of environmental screening. On the other hand, they can be efficiently tuned by means of surroun ding dielectric materials. Thus all physical properties which decisively depend on the exact structure of the electronic interactions can be in principle efficiently controlled and manipulated from the outside via Coulomb engineering. Here, we show how this concept can be used to create fundamentally new plasmonic waveguides in metallic layered materials. We discuss in detail how dielectrically structured environments can be utilized to non-invasively confine plasmonic excitations in an otherwise homogeneous metallic 2D system by modification of its many-body interactions. We define optimal energy ranges for this mechanism and demonstrate plasmonic confinement within several nanometers. In contrast to conventional functionalization mechanisms, this scheme relies on a purely many-body concept and does not involve any direct modifications to the active material itself.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا