ﻻ يوجد ملخص باللغة العربية
We have calculated the density-density (Lindhard) response function of a homogeneous two-dimensional (2D) hole gas in the static (omega=0) limit. The bulk valence-band structure comprising heavy-hole (HH) and light-hole (LH) states is modeled using Luttingers kdotp approach within the axial approximation. We elucidate how, in contrast to the case of conduction electrons, the Lindhard function of 2D holes exhibits unique features associated with (i) the confinement-induced HH-LH energy splitting and (ii) the HH-LH mixing arising from the charge carriers in-plane motion. Implications for the dielectric response and related physical observables are discussed.
Momentum-conserving quasiparticle collisions in two-dimensional Fermi gases give rise to a large family of exceptionally long-lived excitation modes. The lifetimes of these modes exceed by a factor $(T_F/T)^2gg 1$ the conventional Landau Fermi-liquid
We demonstrate tunable transverse rectification in a density-modulated two-dimensional electron gas (2DEG). The density modulation is induced by two surface gates, running in parallel along a narrow stripe of 2DEG. A transverse voltage in the directi
We have fabricated high-mobility, two-dimensional electron gases in a GaAs quantum well on cylindrical surfaces, which allows to investigate the magnetotransport behavior under varying magnetic fields along the current path. A strong asymmetry in the
We study the density-density response function of a collection of charged massive Dirac particles and present analytical expressions for the dynamical polarization function in one, two and three dimensions. The polarization function is then used to f
We report on a systematic investigation of the dominant scattering mechanism in shallow two-dimensional electron gases (2DEGs) formed in modulation-doped GaAs/Al_{x}Ga_{1-x}As heterostructures. The power-law exponent of the electron mobility versus d