ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper we present a novel formulation of chaotic hybrid inflation in supergravity. The model includes a waterfall field which spontaneously breaks a gauged $U_1(B-L)$ at a GUT scale. This allows for the possibility of future model building whi ch includes the standard formulation of baryogenesis via leptogenesis with the waterfall field decaying into right-handed neutrinos. We have not considered the following issues in this short paper, i.e. supersymmetry breaking, dark matter or the gravitino or moduli problems. Our focus is on showing the compatibility of the present model with Planck, WMAP and Bicep2 data.
We explore the LHC phenomenology of dark matter (DM) pair production in association with a 125 GeV Higgs boson. This signature, dubbed `mono-Higgs, appears as a single Higgs boson plus missing energy from DM particles escaping the detector. We perfor m an LHC background study for mono-Higgs signals at $sqrt{s} = 8$ and $14$ TeV for four Higgs boson decay channels: $gammagamma$, $b bar b$, and $ZZ^* to 4ell$, $ellell j j$. We estimate the LHC sensitivities to a variety of new physics scenarios within the frameworks of both effective operators and simplified models. For all these scenarios, the $gammagamma$ channel provides the best sensitivity, whereas the $bbar b$ channel suffers from a large $t bar t$ background. Mono-Higgs is unlike other mono-$X$ searches ($X$=jet, photon, etc.), since the Higgs boson is unlikely to be radiated as initial state radiation, and therefore probes the underlying DM vertex directly.
51 - Linda M. Carpenter 2011
I present a general exclusion bound for the Higgs in fourth generation scenarios with a general lepton sector. Recent Higgs searches in fourth generation scenarios rule out the entire Higgs mass region between 120 and 600 GeV. That such a large range of Higgs masses are excluded is due to the presence of extra heavy flavors of quarks, which substantially increase Higgs production from gluon fusion over the Standard Model rate. However, if heavy fourth generation neutrinos are less than half of the Higgs mass, they can dominate the Higgs decay branching fraction, overtaking the standard Higgs to WW* decay rate. The Higgs mass exclusion in a fourth generation scenario is shown most generally to be 155-600 GeV, and is highly dependent on the fourth generation neutrino mixing parameter.
We study the pair production of fourth generation neutrinos from the decay of an on-shell Higgs produced by gluon fusion. In a fourth generation scenario, the Higgs branching fraction into fourth generation neutrinos may be quite large. In the case t hat the unstable heavy neutrinos are a mixed Majorana and Dirac state, neutrinos pair-produced from Higgs decay will yield a substantial number of like-sign dilepton events. In this article we use inclusive like-sign dilepton searches from hadron colliders to constrain the theoretical parameter space of fourth generation leptons.
48 - Linda M. Carpenter 2010
I analyze a fourth generation lepton sector in which the lightest particle is a stable Majorana neutrino. In this scenario fourth generation neutrinos have both a Dirac and Majorana mass, resulting in two Majorana neutrino mass eigenstates. A reanaly sis of LEPs lower mass bound is performed on stable Majorana neutrinos from the Z width and the lower mass bound is loosened. I also extrapolate LEPs SUSY squark search with a 2 jet plus missing missing energy final state to the production and decay of a pair of heavy Majorana neutrinos; here it is expected that significant regions of the neutrino mass plane may be ruled out. Finally, a search strategy is proposed for heavy fourth generation neutrino pairs at LHC in the four lepton plus missing energy channel. Exclusions are set in the neutrino mass plane for 30 inverse fb of data at LHC for 13 TeV.
We study the production and decay of fourth generation leptons at the Large Hadron Collider (LHC).We find that for charged leptons with masses under a few hundred GeV, the dominant collider signal comes from the production through a W-boson of a char ged and neutral fourth generation lepton. We present a sensitivity study for this process in events with two like-sign charged leptons and at least two associated jets. We show that with sqrts = 7 TeV and 1 inverse fb of data, the LHC can exclude fourth generation charged leptons with masses up to 250 GeV.
114 - Linda M. Carpenter 2010
In an attempt to maximize General Gauge Mediated parameter space, I propose simple models in which gauginos and scalars are generated from disconnected mechanisms. In my models Dirac gauginos are generated through the supersoft mechanism, while indep endent R-symmetric scalar masses are generated through operators involving non-zero messenger supertrace. I propose several new methods for generating negative messenger supertraces which result in viable positive mass squareds for MSSM scalars. The resultant spectra are novel, compressed and may contain light fermionic SM adjoint fields.
We revisit the current experimental bounds on fourth-generation Majorana neutrino masses, including the effects of right handed neutrinos. Current bounds from LEPII are significantly altered by a global analysis. We show that the current bounds on fo urth generation neutrinos decaying to eW and mu W can be reduced to about 80 GeV (from the current bound of 90 GeV), while a neutrino decaying to tau W can be as light as 62.1 GeV. The weakened bound opens up a neutrino decay channel for intermediate mass Higgs, and interesting multi-particle final states for Higgs and fourth generation lepton decays.
241 - Linda M. Carpenter 2008
I explore the phenomenology, constraints and tuning for several weakly coupled implementations of multi-parameter gauge mediation and compare to minimal gauge mediation. The low energy spectra are distinct from that of minimal gauge mediation, a wide range of NLSPs is found and spectra are significantly compressed thus tunings may be generically reduced to a part in 10 to a part in 20.
116 - Linda M. Carpenter 2008
I propose implementing General Gauge Mediation using the class of $SU(N) times U(1)$ SUSY breaking models. As an existence proof, I have utilized the 4-1 model in building multi-parameter gauge mediation. These hidden sectors are relatively easy to u se and avoid several model building pitfalls such as runaway directions. In addition models require no special tuning and may produce as many parameters as general gauge mediation allows.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا