ﻻ يوجد ملخص باللغة العربية
In an attempt to maximize General Gauge Mediated parameter space, I propose simple models in which gauginos and scalars are generated from disconnected mechanisms. In my models Dirac gauginos are generated through the supersoft mechanism, while independent R-symmetric scalar masses are generated through operators involving non-zero messenger supertrace. I propose several new methods for generating negative messenger supertraces which result in viable positive mass squareds for MSSM scalars. The resultant spectra are novel, compressed and may contain light fermionic SM adjoint fields.
We extend the formulation by Meade, Seiberg and Shih of general gauge mediation of supersymmetry breaking to include Dirac masses for the gauginos. These appear through mixing of the visible sector gauginos with additional states in adjoint represent
We present formulae for the calculation of Dirac gaugino masses at leading order in the supersymmetry breaking scale using the methods of analytic continuation in superspace and demonstrate a link with kinetic mixing, even for non-abelian gauginos. W
In the model of gauge mediation of SUSY breaking in the presence of tree-level mediation, the Froggatt-Nielsen mechanism provides a different hierarchy of sparticle masses. We study the spectra and show the results to be like those in an effective supersymmetric model.
Recently there has been much progress in building models of gauge mediation, often with predictions different than those of minimal gauge mediation. Meade, Seiberg, and Shih have characterized the most general spectrum which can arise in gauge mediat
Motivated by the recent excess in the diphoton invariant mass near 750 GeV, we explore a supersymmetric extension of the Standard Model that includes the minimal set of superpartners as well as additional Dirac partner chiral superfields in the adjoi