ترغب بنشر مسار تعليمي؟ اضغط هنا

Higgs Decays to Unstable Neutrinos: Collider Constraints from Inclusive Like-Sign Dilepton Searches

43   0   0.0 ( 0 )
 نشر من قبل Linda Carpenter
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the pair production of fourth generation neutrinos from the decay of an on-shell Higgs produced by gluon fusion. In a fourth generation scenario, the Higgs branching fraction into fourth generation neutrinos may be quite large. In the case that the unstable heavy neutrinos are a mixed Majorana and Dirac state, neutrinos pair-produced from Higgs decay will yield a substantial number of like-sign dilepton events. In this article we use inclusive like-sign dilepton searches from hadron colliders to constrain the theoretical parameter space of fourth generation leptons.

قيم البحث

اقرأ أيضاً

We derive constraints on the relic abundance of a generic particle of mass $sim~1-10^{14}$ TeV which decays into neutrinos at cosmological epochs, using data from the Frejus and IMB nucleon decay detectors and the Flys Eye air shower array. The lifet ime of such unstable particles which may constitute the dark matter today is bounded to be greater than $sim~10^{14}-10^{18}$ yr, depending on the mass. For lifetimes shorter than the age of the universe, neutrino energy losses due to scattering and the expansion redshift become important and set limits to the ability of neutrino observatories to probe the early universe.
Searches for heavy Majorana neutrinos in B- decays in final states containing hadrons plus a mu- mu- pair have been performed using 0.41/fb of data collected with the LHCb detector in proton-proton collisions at a center-of-mass energy of 7 TeV. The D+ mu- mu- and D*+ mu- mu- final states can arise from the presence of virtual Majorana neutrinos of any mass. Other final states containing pi+, Ds+, or D0pi+ can be mediated by an on-shell Majorana neutrino. No signals are found and upper limits are set on Majorana neutrino production as a function of mass, and also on the B- decay branching fractions.
Unparticles ($U$) interact weakly with particles. The direct signature of unparticles will be in the form of missing energy. We study constraints on unparticle interactions using totally invisible decay modes of $Z$, vector quarkonia $V$ and neutrino s. The constraints on the unparticle interaction scale $Lambda_U$ are very sensitive to the dimension $d_U$ of the unparticles. From invisible $Z$ and $V$ decays, we find that with $d_U$ close to 1 for vector $U$, the unparticle scale $Lambda_U$ can be more than $10^4$ TeV, and for $d_U$ around 2, the scale can be lower than one TeV. From invisible neutrino decays, we find that if $d_U$ is close to 3/2, the scale can be more than the Planck mass, but with $d_U$ around 2 the scale can be as low as a few hundred GeV. We also study the possibility of using $V (Z)to gamma + U$ to constrain unparticle interactions, and find that present data give weak constraints.
118 - Daniele Dominici 2009
We recompute the invisible Higgs decay width arising from Higgs-graviscalar mixing in the ADD model, comparing the original derivation in the non-diagonal mass basis to that in a diagonal mass basis. The results obtained are identical (and differ by a factor of 2 from the original calculation) but the diagonal-basis derivation is pedagogically useful for clarifying the physics of the invisible width from mixing. We emphasize that both derivations make it clear that a direct scan in energy for a process such as $WWto WW$ mediated by Higgs plus graviscalar intermediate resonances would follow a {it single} Breit-Wigner form with total width given by $Gamma^{tot}=Gamma_h^{SM}+Gamma_{invisible}$. We also compute the additional contributions to the invisible width due to direct Higgs to graviscalar pair decays. We find that the invisible width due to the latter is relatively small unless the Higgs mass is comparable to or larger than the effective extra-dimensional Planck mass.
LHC searches for non-standard Higgs bosons decaying into tau lepton pairs constitute a sensitive experimental probe for physics beyond the Standard Model (BSM), such as Supersymmetry (SUSY). Recently, the limits obtained from these searches have been presented by the CMS collaboration in a nearly model-independent fashion - as a narrow resonance model - based on the full 8 TeV dataset. In addition to publishing a 95% C.L. exclusion limit, the full likelihood information for the narrow resonance model has been released. This provides valuable information that can be incorporated into global BSM fits. We present a simple algorithm that maps an arbitrary model with multiple neutral Higgs bosons onto the narrow resonance model and derives the corresponding value for the exclusion likelihood from the CMS search. This procedure has been implemented into the public computer code HiggsBounds (version 4.2.0 and higher). We validate our implementation by cross-checking against the official CMS exclusion contours in three Higgs benchmark scenarios in the Minimal Supersymmetric Standard Model (MSSM), and find very good agreement. Going beyond validation, we discuss the combined constraints of the tau tau search and the rate measurements of the SM-like Higgs at 125 GeV in a recently proposed MSSM benchmark scenario, where the lightest Higgs boson obtains SM-like couplings independently of the decoupling of the heavier Higgs states. Technical details for how to access the likelihood information within HiggsBounds are given in the appendix. The program is available at http://higgsbounds.hepforge.org.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا