ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunneling in a quantum coherent structure is not restricted to only nearest neighbours. Hopping between distant sites is possible via the virtual occupation of otherwise avoided intermediate states. Here we report the observation of long range transi tions in the transport through three quantum dots coupled in series. A single electron is delocalized between the left and right quantum dots while the centre one remains always empty. Superpositions are formed and both charge and spin are exchanged between the outermost dots. Detection of the process is achieved via the observation of narrow resonances, insensitive to the transport Pauli spin blockade.
Spin qubits based on interacting spins in double quantum dots have been successfully demonstrated. Readout of the qubit state involves a conversion of spin to charge information, universally achieved by taking advantage of a spin blockade phenomenon resulting from Paulis exclusion principle. The archetypal spin blockade transport signature in double quantum dots takes the form of a rectified current. Currently more complex spin qubit circuits including triple quantum dots are being developed. Here we show both experimentally and theoretically (a) that in a linear triple quantum dot circuit, the spin blockade becomes bipolar with current strongly suppressed in both bias directions and (b) that a new quantum coherent mechanism becomes relevant. Within this mechanism charge is transferred non-intuitively via coherent states from one end of the linear triple dot circuit to the other without involving the centre site. Our results have implications in future complex nano-spintronic circuits.
The near-field interaction between fluorescent emitters and graphene exhibits rich physics associated with local dipole-induced electromagnetic fields that are strongly enhanced due to the unique properties of graphene. Here, we measure emitter lifet imes as a function of emitter-graphene distance d, and find agreement with a universal scaling law, governed by the fine-structure constant. The observed energy transfer- rate is in agreement with a 1/d^4 dependence that is characteristic of 2D lossy media. The emitter decay rate is enhanced 90 times (transfer efficiency of ~99%) with respect to the decay in vacuum at distances d ~ 5 nm. This high energy-transfer rate is mainly due to the two-dimensionality and gapless character of the monoatomic carbon layer. Graphene is thus shown to be an extraordinary energy sink, holding great potential for photodetection, energy harvesting, and nanophotonics.
88 - L. Gaudreau , G. Granger , A. Kam 2011
Spin qubits involving individual spins in single quantum dots or coupled spins in double quantum dots have emerged as potential building blocks for quantum information processing applications. It has been suggested that triple quantum dots may provid e additional tools and functionalities. These include the encoding of information to either obtain protection from decoherence or to permit all-electrical operation, efficient spin busing across a quantum circuit, and to enable quantum error correction utilizing the three-spin Greenberger-Horn-Zeilinger quantum state. Towards these goals we demonstrate for the first time coherent manipulation between two interacting three-spin states. We employ the Landau-Zener-Stuckelberg approach for creating and manipulating coherent superpositions of quantum states. We confirm that we are able to maintain coherence when decreasing the exchange coupling of one spin with another while simultaneously increasing its coupling with the third. Such control of pairwise exchange is a requirement of most spin qubit architectures but has not been previously demonstrated.
64 - G. Granger , L. Gaudreau , A. Kam 2010
We measure a triple quantum dot in the regime where three addition lines, corresponding to the addition of an electron to each of three dots, pass through each other. In particular, we probe the interplay between transport and the tridimensional natu re of the stability diagram. We choose the regime most pertinent for spin qubit applications. We find that at low bias transport through the triple quantum dot circuit is only possible at six quadruple point locations. The results are consistent with an equivalent circuit model.
We are pursuing a capability to perform time resolved manipulations of single spins in quantum dot circuits involving more than two quantum dots. In this paper, we demonstrate full counting statistics as well as averaging techniques we use to calibra te the tunnel barriers. We make use of this to implement the Delft protocol for single shot single spin readout in a device designed to form a triple quantum dot potential. We are able to tune the tunnelling times over around three orders of magnitude. We obtain a spin relaxation time of 300 microseconds at 10T.
Telegraphic noise is one of the most significant problems that arises when making sensitive measurements with lateral electrostatic devices. In this paper we demonstrate that a wafer which had only produced devices with significant telegraph noise pr oblems can be made to produce quiet devices if a thin insulator layer is placed between the gates and the GaAs/AlGaAs heterostructure. A slow drift in the resulting devices is attributed to the trapping of charges within the specific insulator used. This charge can be manipulated, leading to strategies for stabilizing the device.
77 - L. Gaudreau , A. Kam , G. Granger 2009
In this paper we report on a tuneable few electron lateral triple quantum dot design. The quantum dot potentials are arranged in series. The device is aimed at studies of triple quantum dot properties where knowing the exact number of electrons is im portant as well as quantum information applications involving electron spin qubits. We demonstrate tuning strategies for achieving required resonant conditions such as quadruple points where all three quantum dots are on resonance. We find that in such a device resonant conditions at specific configurations are accompanied by novel charge transfer behaviour.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا