ﻻ يوجد ملخص باللغة العربية
The near-field interaction between fluorescent emitters and graphene exhibits rich physics associated with local dipole-induced electromagnetic fields that are strongly enhanced due to the unique properties of graphene. Here, we measure emitter lifetimes as a function of emitter-graphene distance d, and find agreement with a universal scaling law, governed by the fine-structure constant. The observed energy transfer- rate is in agreement with a 1/d^4 dependence that is characteristic of 2D lossy media. The emitter decay rate is enhanced 90 times (transfer efficiency of ~99%) with respect to the decay in vacuum at distances d ~ 5 nm. This high energy-transfer rate is mainly due to the two-dimensionality and gapless character of the monoatomic carbon layer. Graphene is thus shown to be an extraordinary energy sink, holding great potential for photodetection, energy harvesting, and nanophotonics.
Graphene is an ideal material for fabricating atomically thin nanometre spaced electrodes. Recently, carbon-based nanoelectrodes have been employed to create single-molecule transistors and phase change memory devices. In spite of the significant rec
The differential conductance of graphene is shown to exhibit a zero-bias anomaly at low temperatures, arising from a suppression of the quantum corrections due to weak localization and electron interactions. A simple rescaling of these data, free of
Fluorescence studies of natural photosynthetic complexes on a graphene layer demonstrate pronounced influence of the excitation wavelength on the energy transfer efficiency to graphene. Ultraviolet light yields much faster decay of fluorescence, with
In nearly compensated graphene, disorder-assisted electron-phonon scattering or supercollisions are responsible for both quasiparticle recombination and energy relaxation. Within the hydrodynamic approach, these processes contribute weak decay terms
Energy transfer from photoexcited zero-dimensional systems to metallic systems plays a prominent role in modern day materials science. A situation of particular interest concerns the interaction between a photoexcited dipole and an atomically thin me