ترغب بنشر مسار تعليمي؟ اضغط هنا

Many models of market dynamics make use of the idea of conservative wealth exchanges among economic agents. A few years ago an exchange model using extremal dynamics was developed and a very interesting result was obtained: a self-generated minimum w ealth or poverty line. On the other hand, the wealth distribution exhibited an exponential shape as a function of the square of the wealth. These results have been obtained both considering exchanges between nearest neighbors or in a mean field scheme. In the present paper we study the effect of distributing the agents on a complex network. We have considered archetypical complex networks: Erd{o}s-Renyi random networks and scale-free networks. The presence of a poverty line with finite wealth is preserved but spatial correlations are important, particularly between the degree of the node and the wealth. We present a detailed study of the correlations, as well as the changes in the Gini coefficient, that measures the inequality, as a function of the type and average degree of the considered networks.
In the last decades, many authors have used the susceptible-infected-recovered model to study the impact of the disease spreading on the evolution of the infected individuals. However, few authors focused on the temporal unfolding of the susceptible individuals. In this paper, we study the dynamic of the susceptible-infected-recovered model in an adaptive network that mimics the transitory deactivation of permanent social contacts, such as friendship and work-ship ties. Using an edge-based compartmental model and percolation theory, we obtain the evolution equations for the fraction susceptible individuals in the susceptible biggest component. In particular, we focus on how the individuals behavior impacts on the dilution of the susceptible network. We show that, as a consequence, the spreading of the disease slows down, protecting the biggest susceptible cluster by increasing the critical time at which the giant susceptible component is destroyed. Our theoretical results are fully supported by extensive simulations.
In this work, we study the evolution of the susceptible individuals during the spread of an epidemic modeled by the susceptible-infected-recovered (SIR) process spreading on the top of complex networks. Using an edge-based compartmental approach and percolation tools, we find that a time-dependent quantity $Phi_S(t)$, namely, the probability that a given neighbor of a node is susceptible at time $t$, is the control parameter of a node void percolation process involving those nodes on the network not-reached by the disease. We show that there exists a critical time $t_c$ above which the giant susceptible component is destroyed. As a consequence, in order to preserve a macroscopic connected fraction of the network composed by healthy individuals which guarantee its functionality, any mitigation strategy should be implemented before this critical time $t_c$. Our theoretical results are confirmed by extensive simulations of the SIR process.
We study the critical effect of an intermittent social distancing strategy on the propagation of epidemics in adaptive complex networks. We characterize the effect of our strategy in the framework of the susceptible-infected-recovered model. In our m odel, based on local information, a susceptible individual interrupts the contact with an infected individual with a probability $sigma$ and restores it after a fixed time $t_{b}$. We find that, depending on the network topology, in our social distancing strategy there exists a cutoff threshold $sigma_{c}$ beyond which the epidemic phase disappears. Our results are supported by a theoretical framework and extensive simulations of the model. Furthermore we show that this strategy is very efficient because it leads to a susceptible herd behavior that protects a large fraction of susceptibles individuals. We explain our results using percolation arguments.
We consider the discrete surface growth process with relaxation to the minimum [F. Family, J. Phys. A {bf 19} L441, (1986).] as a possible synchronization mechanism on scale-free networks, characterized by a degree distribution $P(k) sim k^{-lambda}$ , where $k$ is the degree of a node and $lambda$ his broadness, and compare it with the usually applied Edward-Wilkinson process [S. F. Edwards and D. R. Wilkinson, Proc. R. Soc. London Ser. A {bf 381},17 (1982) ]. In spite of both processes belong to the same universality class for Euclidean lattices, in this work we demonstrate that for scale-free networks with exponents $lambda<3$ this is not true. Moreover, we show that for these ubiquitous cases the Edward-Wilkinson process enhances spontaneously the synchronization when the system size is increased, which is a non-physical result. Contrarily, the discrete surface growth process do not present this flaw and is applicable for every $lambda$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا