ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of a Market Model with Conservative Exchanges on Complex Networks

126   0   0.0 ( 0 )
 نشر من قبل Lidia A. Braunstein
 تاريخ النشر 2012
والبحث باللغة English




اسأل ChatGPT حول البحث

Many models of market dynamics make use of the idea of conservative wealth exchanges among economic agents. A few years ago an exchange model using extremal dynamics was developed and a very interesting result was obtained: a self-generated minimum wealth or poverty line. On the other hand, the wealth distribution exhibited an exponential shape as a function of the square of the wealth. These results have been obtained both considering exchanges between nearest neighbors or in a mean field scheme. In the present paper we study the effect of distributing the agents on a complex network. We have considered archetypical complex networks: Erd{o}s-Renyi random networks and scale-free networks. The presence of a poverty line with finite wealth is preserved but spatial correlations are important, particularly between the degree of the node and the wealth. We present a detailed study of the correlations, as well as the changes in the Gini coefficient, that measures the inequality, as a function of the type and average degree of the considered networks.



قيم البحث

اقرأ أيضاً

We present a novel method to reconstruct complex network from partial information. We assume to know the links only for a subset of the nodes and to know some non-topological quantity (fitness) characterising every node. The missing links are generat ed on the basis of the latter quan- tity according to a fitness model calibrated on the subset of nodes for which links are known. We measure the quality of the reconstruction of several topological properties, such as the network density and the degree distri- bution as a function of the size of the initial subset of nodes. Moreover, we also study the resilience of the network to distress propagation. We first test the method on ensembles of synthetic networks generated with the Exponential Random Graph model which allows to apply common tools from statistical mechanics. We then test it on the empirical case of the World Trade Web. In both cases, we find that a subset of 10 % of nodes is enough to reconstruct the main features of the network along with its resilience with an error of 5%.
The production and consumption of information about Bitcoin and other digital-, or crypto-, currencies have grown together with their market capitalisation. However, a systematic investigation of the relationship between online attention and market d ynamics, across multiple digital currencies, is still lacking. Here, we quantify the interplay between the attention towards digital currencies in Wikipedia and their market performance. We consider the entire edit history of currency-related pages, and their view history from July 2015. First, we quantify the evolution of the cryptocurrency presence in Wikipedia by analysing the editorial activity and the network of co-edited pages. We find that a small community of tightly connected editors is responsible for most of the production of information about cryptocurrencies in Wikipedia. Then, we show that a simple trading strategy informed by Wikipedia views performs better, in terms of returns on investment, than classic baseline strategies for most of the covered period. Our results contribute to the recent literature on the interplay between online information and investment markets, and we anticipate it will be of interest for researchers as well as investors.
Algorithms for community detection are usually stochastic, leading to different partitions for different choices of random seeds. Consensus clustering has proven to be an effective technique to derive more stable and accurate partitions than the ones obtained by the direct application of the algorithm. However, the procedure requires the calculation of the consensus matrix, which can be quite dense if (some of) the clusters of the input partitions are large. Consequently, the complexity can get dangerously close to quadratic, which makes the technique inapplicable on large graphs. Here we present a fast variant of consensus clustering, which calculates the consensus matrix only on the links of the original graph and on a comparable number of additional node pairs, suitably chosen. This brings the complexity down to linear, while the performance remains comparable as the full technique. Therefore, our fast consensus clustering procedure can be applied on networks with millions of nodes and links.
Innovation is the driving force of human progress. Recent urn models reproduce well the dynamics through which the discovery of a novelty may trigger further ones, in an expanding space of opportunities, but neglect the effects of social interactions . Here we focus on the mechanisms of collective exploration and we propose a model in which many urns, representing different explorers, are coupled through the links of a social network and exploit opportunities coming from their contacts. We study different network structures showing, both analytically and numerically, that the pace of discovery of an explorer depends on its centrality in the social network. Our model sheds light on the role that social structures play in discovery processes.
In this paper, we explore the relationship between the topological characteristics of a complex network and its robustness to sustained targeted attacks. Using synthesised scale-free, small-world and random networks, we look at a number of network me asures, including assortativity, modularity, average path length, clustering coefficient, rich club profiles and scale-free exponent (where applicable) of a network, and how each of these influence the robustness of a network under targeted attacks. We use an established robustness coefficient to measure topological robustness, and consider sustained targeted attacks by order of node degree. With respect to scale-free networks, we show that assortativity, modularity and average path length have a positive correlation with network robustness, whereas clustering coefficient has a negative correlation. We did not find any correlation between scale-free exponent and robustness, or rich-club profiles and robustness. The robustness of small-world networks on the other hand, show substantial positive correlations with assortativity, modularity, clustering coefficient and average path length. In comparison, the robustness of Erdos-Renyi random networks did not have any significant correlation with any of the network properties considered. A significant observation is that high clustering decreases topological robustness in scale-free networks, yet it increases topological robustness in small-world networks. Our results highlight the importance of topological characteristics in influencing network robustness, and illustrate design strategies network designers can use to increase the robustness of scale-free and small-world networks under sustained targeted attacks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا