ترغب بنشر مسار تعليمي؟ اضغط هنا

Temporal percolation of a susceptible adaptive network

178   0   0.0 ( 0 )
 نشر من قبل Lucas Valdez D.
 تاريخ النشر 2012
والبحث باللغة English




اسأل ChatGPT حول البحث

In the last decades, many authors have used the susceptible-infected-recovered model to study the impact of the disease spreading on the evolution of the infected individuals. However, few authors focused on the temporal unfolding of the susceptible individuals. In this paper, we study the dynamic of the susceptible-infected-recovered model in an adaptive network that mimics the transitory deactivation of permanent social contacts, such as friendship and work-ship ties. Using an edge-based compartmental model and percolation theory, we obtain the evolution equations for the fraction susceptible individuals in the susceptible biggest component. In particular, we focus on how the individuals behavior impacts on the dilution of the susceptible network. We show that, as a consequence, the spreading of the disease slows down, protecting the biggest susceptible cluster by increasing the critical time at which the giant susceptible component is destroyed. Our theoretical results are fully supported by extensive simulations.

قيم البحث

اقرأ أيضاً

In this work, we study the evolution of the susceptible individuals during the spread of an epidemic modeled by the susceptible-infected-recovered (SIR) process spreading on the top of complex networks. Using an edge-based compartmental approach and percolation tools, we find that a time-dependent quantity $Phi_S(t)$, namely, the probability that a given neighbor of a node is susceptible at time $t$, is the control parameter of a node void percolation process involving those nodes on the network not-reached by the disease. We show that there exists a critical time $t_c$ above which the giant susceptible component is destroyed. As a consequence, in order to preserve a macroscopic connected fraction of the network composed by healthy individuals which guarantee its functionality, any mitigation strategy should be implemented before this critical time $t_c$. Our theoretical results are confirmed by extensive simulations of the SIR process.
Understanding spreading dynamics will benefit society as a whole in better preventing and controlling diseases, as well as facilitating the socially responsible information while depressing destructive rumors. In network-based spreading dynamics, edg es with different weights may play far different roles: a friend from afar usually brings novel stories, and an intimate relationship is highly risky for a flu epidemic. In this article, we propose a weighted susceptible-infected-susceptible model on complex networks, where the weight of an edge is defined by the topological proximity of the two associated nodes. Each infected individual is allowed to select limited number of neighbors to contact, and a tunable parameter is introduced to control the preference to contact through high-weight or low-weight edges. Experimental results on six real networks show that the epidemic prevalence can be largely promoted when strong ties are favored in the spreading process. By comparing with two statistical null models respectively with randomized topology and randomly redistributed weights, we show that the distribution pattern of weights, rather than the topology, mainly contributes to the experimental observations. Further analysis suggests that the weight-weight correlation strongly affects the results: high-weight edges are more significant in keeping high epidemic prevalence when the weight-weight correlation is present.
Diseases spread over temporal networks of interaction events between individuals. Structures of these temporal networks hold the keys to understanding epidemic propagation. One early concept of the literature to aid in discussing these structures is concurrency -- quantifying individuals tendency to form time-overlapping partnerships. Although conflicting evaluations and an overabundance of operational definitions have marred the history of concurrency, it remains important, especially in the area of sexually transmitted infections. Today, much of theoretical epidemiology uses more direct models of contact patterns, and there is an emerging body of literature trying to connect methods to the concurrency literature. In this review, we will cover the development of the concept of concurrency and these new approaches.
Identifying highly susceptible individuals in spreading processes is of great significance in controlling outbreaks. In this paper, we explore the susceptibility of people in susceptible-infectious-recovered (SIR) and rumor spreading dynamics. We fir st study the impact of community structure on peoples susceptibility. Despite that the community structure can reduce the infected population given same infection rates, it will not deterministically affect nodes susceptibility. We find the susceptibility of individuals is sensitive to the choice of spreading dynamics. For SIR spreading, since the susceptibility is highly correlated to nodes influence, the topological indicator k-shell can better identify highly susceptible individuals, outperforming degree, betweenness centrality and PageRank. In contrast, in rumor spreading model, where nodes susceptibility and influence have no clear correlation, degree performs the best among considered topological measures. Our finding highlights the significance of both topological features and spreading mechanisms in identifying highly susceptible population.
One can point to a variety of historical milestones for gender equality in STEM (science, technology, engineering, and mathematics), however, practical effects are incremental and ongoing. It is important to quantify gender differences in subdomains of scientific work in order to detect potential biases and monitor progress. In this work, we study the relevance of gender in scientific collaboration patterns in the Institute for Operations Research and the Management Sciences (INFORMS), a professional society with sixteen peer-reviewed journals. Using their publication data from 1952 to 2016, we constructed a large temporal bipartite network between authors and publications, and augmented the author nodes with gender labels. We characterized differences in several basic statistics of this network over time, highlighting how they have changed with respect to relevant historical events. We find a steady increase in participation by women (e.g., fraction of authorships by women and of new women authors) starting around 1980. However, women still comprise less than 25% of the INFORMS society and an even smaller fraction of authors with many publications. Moreover, we describe a methodology for quantifying the structural role of an authorship with respect to the overall connectivity of the network, using it to measure subtle differences between authorships by women and by men. Specifically, as measures of structural importance of an authorship, we use effective resistance and contraction importance, two measures related to diffusion throughout a network. As a null model, we propose a degree-preserving temporal and geometric network model with emergent communities. Our results suggest the presence of systematic differences between the collaboration patterns of men and women that cannot be explained by only local statistics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا