ﻻ يوجد ملخص باللغة العربية
In the last decades, many authors have used the susceptible-infected-recovered model to study the impact of the disease spreading on the evolution of the infected individuals. However, few authors focused on the temporal unfolding of the susceptible individuals. In this paper, we study the dynamic of the susceptible-infected-recovered model in an adaptive network that mimics the transitory deactivation of permanent social contacts, such as friendship and work-ship ties. Using an edge-based compartmental model and percolation theory, we obtain the evolution equations for the fraction susceptible individuals in the susceptible biggest component. In particular, we focus on how the individuals behavior impacts on the dilution of the susceptible network. We show that, as a consequence, the spreading of the disease slows down, protecting the biggest susceptible cluster by increasing the critical time at which the giant susceptible component is destroyed. Our theoretical results are fully supported by extensive simulations.
In this work, we study the evolution of the susceptible individuals during the spread of an epidemic modeled by the susceptible-infected-recovered (SIR) process spreading on the top of complex networks. Using an edge-based compartmental approach and
Understanding spreading dynamics will benefit society as a whole in better preventing and controlling diseases, as well as facilitating the socially responsible information while depressing destructive rumors. In network-based spreading dynamics, edg
Diseases spread over temporal networks of interaction events between individuals. Structures of these temporal networks hold the keys to understanding epidemic propagation. One early concept of the literature to aid in discussing these structures is
Identifying highly susceptible individuals in spreading processes is of great significance in controlling outbreaks. In this paper, we explore the susceptibility of people in susceptible-infectious-recovered (SIR) and rumor spreading dynamics. We fir
One can point to a variety of historical milestones for gender equality in STEM (science, technology, engineering, and mathematics), however, practical effects are incremental and ongoing. It is important to quantify gender differences in subdomains