ترغب بنشر مسار تعليمي؟ اضغط هنا

In RuCl$_3$, inelastic neutron scattering and Raman spectroscopy reveal a continuum of non-spin-wave excitations that persists to high temperature, suggesting the presence of a spin liquid state on a honeycomb lattice. In the context of the Kitaev mo del, magnetic fields introduce finite interactions between the elementary excitations, and thus the effects of high magnetic fields - comparable to the spin exchange energy scale - must be explored. Here we report measurements of the magnetotropic coefficient - the second derivative of the free energy with respect to magnetic field orientation - over a wide range of magnetic fields and temperatures. We find that magnetic field and temperature compete to determine the magnetic response in a way that is independent of the large intrinsic exchange interaction energy. This emergent scale-invariant magnetic anisotropy provides evidence for a high degree of exchange frustration that favors the formation of a spin liquid state in RuCl$_3$.
We examine recent magnetic torque measurements in two compounds, $gamma$-Li$_2$IrO$_3$ and RuCl$_3$, which have been discussed as possible realizations of the Kitaev model. The analysis of the reported discontinuity in torque, as an external magnetic field is rotated across the $c-$axis in both crystals, suggests that they have a translationally-invariant chiral spin-order of the from $<{bf S}_i. ({bf S}_j ~times ~ {bf S}_k)> e 0$ in the ground state and persisting over a very wide range of magnetic field and temperature. An extra-ordinary $|B|B^2$ dependence of the torque for small fields, beside the usual $B^2$ part, is predicted due to the chiral spin-order, and found to be consistent with experiments upon further analysis of the data. Other experiments such as inelastic scattering and thermal Hall effect and several questions raised by the discovery of chiral spin-order, including its topological consequences are discussed.
Weyl fermions are a new ingredient for correlated states of electronic matter. A key difficulty has been that real materials also contain non-Weyl quasiparticles, and disentangling the experimental signatures has proven challenging. We use magnetic f ields up to 95 tesla to drive the Weyl semimetal TaAs far into its quantum limit (QL), where only the purely chiral 0th Landau levels (LLs) of the Weyl fermions are occupied. We find the electrical resistivity to be nearly independent of magnetic field up to 50 tesla: unusual for conventional metals but consistent with the chiral anomaly for Weyl fermions. Above 50 tesla we observe a two-order-of-magnitude increase in resistivity, indicating that a gap opens in the chiral LLs. Above 80 tesla we observe strong ultrasonic attenuation below 2 kelvin, suggesting a mesoscopically-textured state of matter. These results point the way to inducing new correlated states of matter in the QL of Weyl semimetals.
The complexity of the antiferromagnetic orders observed in the honeycomb iridates is a double-edged sword in the search for a quantum spin-liquid ground state: both attesting that the magnetic interactions provide many of the necessary ingredients, b ut simultaneously impeding access. As a result, focus has been drawn to the unusual magnetic orders and the hints they provide to the underlying spin correlations. However, the study of any particular broken symmetry state generally provides little clue as to the possibilities of other nearby ground states cite{Anderson}. Here we use extreme magnetic fields to reveal the extent of the spin correlations in $gamma$-lithium iridate. We find that a magnetic field with a small component along the magnetic easy-axis melts long-range order, revealing a bistable, strongly correlated spin state. Far from the usual destruction of antiferromagnetism via spin polarization, the correlated spin state possesses only a small fraction of the total moment, without evidence for long-range order up to the highest attainable magnetic fields (>90 T).
Magneto-quantum oscillation experiments in high temperature superconductors show a strong thermally-induced suppression of the oscillation amplitude approaching critical dopings---in support of a quantum critical origin of their phase diagrams. We su ggest that, in addition to a thermodynamic mass enhancement, these experiments may directly indicate the increasing role of quantum fluctuations that suppress the oscillation amplitude through inelastic scattering. We show that the traditional theoretical approaches beyond Lifshitz-Kosevich to calculate the oscillation amplitude in correlated metals result in a contradiction with the third law of thermodynamics and suggest a way to rectify this problem.
We report resonant ultrasound spectroscopy (RUS), dilatometry/magnetostriction, magnetotransport, magnetization, specific heat, and $^{119}$Sn Mossbauer spectroscopy measurements on SnTe and Sn$_{0.995}$Cr$_{0.005}$Te. Hall measurements at $T=77$ K i ndicate that our Bridgman-grown single crystals have a $p$-type carrier concentration of $3.4 times 10^{19}$ cm$^{-3}$ and that our Cr-doped crystals have an $n$-type concentration of $5.8 times 10^{22}$ cm$^{-3}$. Although our SnTe crystals are diamagnetic over the temperature range $2, text{K} leq T leq 1100, text{K}$, the Cr-doped crystals are room temperature ferromagnets with a Curie temperature of 294 K. For each sample type, three-terminal capacitive dilatometry measurements detect a subtle 0.5 micron distortion at $T_c approx 85$ K. Whereas our RUS measurements on SnTe show elastic hardening near the structural transition, pointing to co-elastic behavior, similar measurements on Sn$_{0.995}$Cr$_{0.005}$Te show a pronounced softening, pointing to ferroelastic behavior. Effective Debye temperature, $theta_D$, values of SnTe obtained from $^{119}$Sn Mossbauer studies show a hardening of phonons in the range 60--115K ($theta_D$ = 162K) as compared with the 100--300K range ($theta_D$ = 150K). In addition, a precursor softening extending over approximately 100 K anticipates this collapse at the critical temperature, and quantitative analysis over three decades of its reduced modulus finds $Delta C_{44}/C_{44}=A|(T-T_0)/T_0|^{-kappa}$ with $kappa = 0.50 pm 0.02 $, a value indicating a three-dimensional softening of phonon branches at a temperature $T_0 sim 75$ K, considerably below $T_c$. We suggest that the differences in these two types of elastic behaviors lie in the absence of elastic domain wall motion in the one case and their nucleation in the other.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا