ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust spin correlations at high magnetic fields in the honeycomb iridates

70   0   0.0 ( 0 )
 نشر من قبل Kimberly Modic
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The complexity of the antiferromagnetic orders observed in the honeycomb iridates is a double-edged sword in the search for a quantum spin-liquid ground state: both attesting that the magnetic interactions provide many of the necessary ingredients, but simultaneously impeding access. As a result, focus has been drawn to the unusual magnetic orders and the hints they provide to the underlying spin correlations. However, the study of any particular broken symmetry state generally provides little clue as to the possibilities of other nearby ground states cite{Anderson}. Here we use extreme magnetic fields to reveal the extent of the spin correlations in $gamma$-lithium iridate. We find that a magnetic field with a small component along the magnetic easy-axis melts long-range order, revealing a bistable, strongly correlated spin state. Far from the usual destruction of antiferromagnetism via spin polarization, the correlated spin state possesses only a small fraction of the total moment, without evidence for long-range order up to the highest attainable magnetic fields (>90 T).

قيم البحث

اقرأ أيضاً

We investigate the doping effects of magnetic and nonmagnetic impurities injected to the honeycomb iridate sample of Na2IrO3 . Both the doping result in changing the ordering temperature as well as the Curie-Weiss temperature of the parent sample as a consequence of enhancement of the lattice frustration, screening of the Ir atoms and spin-orbit effects that reflects in the susceptibility and specific heat measurements. Our findings are corroborated by a detailed comparative study of various magnetic and nonmagnetic impurity atoms that have notable effects on different electronic properties of the doped compounds.
In the quest for realizations of quantum spin liquids, the exploration of Kitaev materials - spin-orbit entangled Mott insulators with strong bond-directional exchanges - has taken center stage. However, in these materials the local spin-orbital j=1/ 2 moments typically show long-range magnetic order at low temperature, thus defying the formation of a spin-liquid ground state. Using resonant inelastic x-ray scattering (RIXS), we here report on a proximate spin liquid regime with clear fingerprints of Kitaev physics in the magnetic excitations of the honeycomb iridates alpha-Li2IrO3 and Na2IrO3. We observe a broad continuum of magnetic excitations that persists up to at least 300K, more than an order of magnitude larger than the magnetic ordering temperatures. We prove the magnetic character of this continuum by an analysis of the resonance behavior. RIXS measurements of the dynamical structure factor for energies within the continuum show that dynamical spin-spin correlations are restricted to nearest neighbors. Notably, these spectroscopic observations are also present in the magnetically ordered state for excitation energies above the conventional magnon excitations. Phenomenologically, our data agree with inelastic neutron scattering results on the related honeycomb compound RuCl3, establishing a common ground for a proximate Kitaev spin-liquid regime in these materials.
Pyrochlore iridates A2Ir2O7 (A = rare earth elements, Y or Bi) hold great promise for realizing novel electronic and magnetic states owing to the interplay of spin-orbit coupling, electron correlation and geometrical frustration. A prominent example is the formation of all-in/all-out (AIAO)antiferromagnetic order in the Ir4+ sublattice that comprises of corner-sharing tetrahedra. Here we report on an unusual magnetic phenomenon, namely a cooling-field induced shift of magnetic hysteresis loop along magnetization axis, and its possible origin in pyrochlore iridates with non-magnetic Ir defects (e.g. Ir3+). In a simple model, we attribute the magnetic hysteresis loop to the formation of ferromagnetic droplets in the AIAO antiferromagnetic background. The weak ferromagnetism originates from canted antiferromagnetic order of the Ir4+ moments surrounding each non-magnetic Ir defect. The shift of hysteresis loop can be understood quantitatively based on an exchange-bias like effect in which the moments at the shell of the FM droplets are pinned by the AIAO AFM background via mainly the Heisenberg (J) and Dzyaloshinsky-Moriya (D) interactions. The magnetic pinning is stable and robust against the sweeping cycle and sweeping field up to 35 T, which is possibly related to the magnetic octupolar nature of the AIAO order.
81 - G. Cao , T. F. Qi , L. Li 2013
We report the successful synthesis of single-crystals of the layered iridate, (Na$_{1-x}$Li$_{x}$)$_2$IrO$_3$, $0leq x leq 0.9$, and a thorough study of its structural, magnetic, thermal and transport properties. The new compound allows a controlled interpolation between Na$_2$IrO$_3$ and Li$_2$IrO$_3$, while maintaing the novel quantum magnetism of the honeycomb Ir$^{4+}$ planes. The measured phase diagram demonstrates a dramatic suppression of the Neel temperature, $T_N$, at intermediate $x$ suggesting that the magnetic order in Na$_2$IrO$_3$ and Li$_2$IrO$_3$ are distinct, and that at $xapprox 0.7$, the compound is close to a magnetically disordered phase that has been sought after in Na$_2$IrO$_3$ and Li$_2$IrO$_3$. By analyzing our magnetic data with a simple theoretical model we also show that the trigonal splitting, on the Ir$^{4+}$ ions changes sign from Na$_2$IrO$_3$ and Li$_2$IrO$_3$, and the honeycomb iridates are in the strong spin-orbit coupling regime, controlled by $jeff=1/2$ moments.
We report an unexpected magnetic-field-driven magnetic structure in the 5f-electron Shastry- Sutherland system U2Pd2In. This phase develops at low temperatures from a noncollinear antiferromagnetic ground state above the critical field of 25.8 T appl ied along the a-axis. All U moments have a net magnetic moment in the direction of the applied field, described by a ferromagnetic propagation vector qF = (0 0 0) and an antiferromagnetic component described by a propagation vector qAF = (0 0.30 1/2 ) due to a modulation in the direction perpendicular to the applied field. We conclude that this surprising noncollinear magnetic structure is due to a competition between the single-ion anisotropy trying to keep moments, similar to the ground state, along the [110]-type directions, Dzyaloshinskii-Moryia interaction forcing them to be perpendicular to each other and application of the external magnetic field attempting to align them along the field direction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا