ﻻ يوجد ملخص باللغة العربية
Weyl fermions are a new ingredient for correlated states of electronic matter. A key difficulty has been that real materials also contain non-Weyl quasiparticles, and disentangling the experimental signatures has proven challenging. We use magnetic fields up to 95 tesla to drive the Weyl semimetal TaAs far into its quantum limit (QL), where only the purely chiral 0th Landau levels (LLs) of the Weyl fermions are occupied. We find the electrical resistivity to be nearly independent of magnetic field up to 50 tesla: unusual for conventional metals but consistent with the chiral anomaly for Weyl fermions. Above 50 tesla we observe a two-order-of-magnitude increase in resistivity, indicating that a gap opens in the chiral LLs. Above 80 tesla we observe strong ultrasonic attenuation below 2 kelvin, suggesting a mesoscopically-textured state of matter. These results point the way to inducing new correlated states of matter in the QL of Weyl semimetals.
In 1929, H. Weyl proposed that the massless solution of Dirac equation represents a pair of new type particles, the so-called Weyl fermions [1]. However the existence of them in particle physics remains elusive for more than eight decades. Recently,
It is shown that the Weyl semimetal TaAs can have a significant polar vector contribution to its optical activity. This is quantified by ab initio calculations of the resonant x-ray diffraction at the Ta L1 edge. For the Bragg vector (400), this pola
We report the electrical transport properties for Weyl semimetal TaAs in an intense magnetic field. Series of anomalies occur in the longitudinal magnetoresistance and Hall signals at ultra-low temperatures when the Weyl electrons are confined into t
The Fermi surface topology of a Weyl semimetal (WSM) depends strongly on the position of the chemical potential. If it resides close to the band touching points (Weyl nodes), as it does in TaAs, separate Fermi surfaces of opposite chirality emerge, l
The magnetic-field dependence of optical reflectivity [$R(omega)$] and optical conductivity [$sigma(omega)$] spectra of the ideal type-I Weyl semimetal TaAs has been investigated at the temperature of 10 K in the terahertz (THz) and infrared (IR) reg