ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermodynamic constraints on the amplitude of quantum oscillations

75   0   0.0 ( 0 )
 نشر من قبل Arkady Shekhter
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magneto-quantum oscillation experiments in high temperature superconductors show a strong thermally-induced suppression of the oscillation amplitude approaching critical dopings---in support of a quantum critical origin of their phase diagrams. We suggest that, in addition to a thermodynamic mass enhancement, these experiments may directly indicate the increasing role of quantum fluctuations that suppress the oscillation amplitude through inelastic scattering. We show that the traditional theoretical approaches beyond Lifshitz-Kosevich to calculate the oscillation amplitude in correlated metals result in a contradiction with the third law of thermodynamics and suggest a way to rectify this problem.

قيم البحث

اقرأ أيضاً

We found that thermodynamic quantum time crystals in fermi systems, defined as quantum orders oscillating periodically in the imaginary Matsubara time with zero mean, are metastable for two general classes of solutions. Mean-field time independent so lutions proved to have lower free energy manifesting true thermodynamic equilibrium with either single or multiple (competing) charge, spin and superconducting symmetry breaking orders. The no-go theorem is proven analytically for a case of long-range interactions between fermions in momentum space in electron-hole and Cooper channels.
In this paper, we present a unified scheme based on the fluid description of the dark sector of the universe. The scheme captures models with interaction between dark energy and dark matter, being the core of generalization the time-varying equation- of-state parameter $omega(a)$ and the time-dependent interactions through the interaction function $epsilon(a)$, where $a$ is the scale factor. Furthermore, we propose thermodynamics constraints on this generalized class of models using the laws of thermodynamics which are combined with observational data. In order to test the observational viability of the unified model, we perform a Bayesian analysis using cosmic chronometers, type Ia supernovae, cosmic microwave background, and angular baryon acoustic oscillation measurements.
We study the quantum Zeno effect (QZE) in two many-body systems, namely the one-dimensional transverse-field Ising model and the Lipkin-Meshkov-Glick (LMG) model, coupled to a central qubit. Our result shows that in order to observe QZE in the Ising model, the frequency of the projective measurement should be of comparable order to that of the system sizes. The same criterion also holds in the symmetry broken phase of the LMG model while in the models polarized phase, the QZE can be easily observed.
The quasi two-dimensional Mott insulator $alpha$-RuCl$_3$ is proximate to the sought-after Kitaev quantum spin liquid (QSL). In a layer of $alpha$-RuCl$_3$ on graphene the dominant Kitaev exchange is further enhanced by strain. Recently, quantum osci llation (QO) measurements of such $alpha$-RuCl$_3$ / graphene heterostructures showed an anomalous temperature dependence beyond the standard Lifshitz-Kosevich (LK) description. Here, we develop a theory of anomalous QO in an effective Kitaev-Kondo lattice model in which the itinerant electrons of the graphene layer interact with the correlated magnetic layer via spin interactions. At low temperatures a heavy Fermi liquid emerges such that the neutral Majorana fermion excitations of the Kitaev QSL acquire charge by hybridising with the graphene Dirac band. Using ab-initio calculations to determine the parameters of our low energy model we provide a microscopic theory of anomalous QOs with a non-LK temperature dependence consistent with our measurements. We show how remnants of fractionalized spin excitations can give rise to characteristic signatures in QO experiments.
77 - Jong Mok Ok , Y. J. Jo , K. Kim 2013
We report the de Haas-van Alphen (dHvA) oscillations and first-principle calculations for triangular antiferromagnet PdCrO2 showing unconventional anomalous Hall effect (AHE). The dHvA oscillations in PdCrO2 reveal presence of several 2 dimensional F ermi surfaces of smaller size than found in nonmagnetic PdCoO2. This evidences Fermi surface reconstruction due to the non-collinear 120 antiferromagnetic ordering of the localized Cr, consistent with the first principle calculations. The temperature dependence of dHvA oscillations shows no signature of additional modification of Cr spin structure below TN. Considering that the 120 helical ordering of Cr spins has a zero scalar spin chirality, our results suggest that PdCrO2 is a rare example of the metallic triangular antiferromagnets whose unconventional AHE can not be understood in terms of the spin chirality mechanism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا