ترغب بنشر مسار تعليمي؟ اضغط هنا

Liquid scintillator detectors play a central role in the detection of neutrinos from various sources. In particular, it is the only technique used so far for the precision spectroscopy of sub-MeV solar neutrinos, as demonstrated by the Borexino exper iment at the Gran Sasso National Laboratory in Italy. The benefit of a high light yield, and thus a low energy threshold and a good energy resolution, comes at the cost of the directional information featured by water Cherenkov detectors, measuring $^8$B solar neutrinos above a few MeV. In this paper we provide the first directionality measurement of sub-MeV solar neutrinos which exploits the correlation between the first few detected photons in each event and the known position of the Sun for each event. This is also the first signature of directionality in neutrinos elastically scattering off electrons in a liquid scintillator target. This measurement exploits the sub-dominant, fast Cherenkov light emission that precedes the dominant yet slower scintillation light signal. Through this measurement, we have also been able to extract the rate of $^{7}$Be solar neutrinos in Borexino. The demonstration of directional sensitivity in a traditional liquid scintillator target paves the way for the possible exploitation of the Cherenkov light signal in future kton-scale experiments using liquid scintillator targets. Directionality is important for background suppression as well as the disentanglement of signals from various sources.
Cosmogenic radio-nuclei are an important source of background for low-energy neutrino experiments. In Borexino, cosmogenic $^{11}$C decays outnumber solar $pep$ and CNO neutrino events by about ten to one. Highly efficient identification of this back ground is mandatory for these neutrino analyses. We present here the details of the most consolidated strategy, used throughout Borexino solar neutrino measurements. It hinges upon finding the space-time correlations between $^{11}$C decays, the preceding parent muons and the accompanying neutrons. This article describes the working principles and evaluates the performance of this Three-Fold Coincidence (TFC) technique in its two current implementations: a hard-cut and a likelihood-based approach. Both show stable performances throughout Borexino Phases II (2012-2016) and III (2016-2020) data sets, with a $^{11}$C tagging efficiency of $sim$90 % and $sim$63-66 % of the exposure surviving the tagging. We present also a novel technique that targets specifically $^{11}$C produced in high-multiplicity during major spallation events. Such $^{11}$C appear as a burst of events, whose space-time correlation can be exploited. Burst identification can be combined with the TFC to obtain about the same tagging efficiency of $sim$90 % but with a higher fraction of the exposure surviving, in the range of $sim$66-68 %.
Borexino is a liquid scintillator detector located at the Laboratori Nazionale del Gran Sasso, Italy with the main goal to measure solar neutrinos. The experiment recently provided the first direct experimental evidence of CNO-cycle neutrinos in the Sun, rejecting the no-CNO signal hypothesis with a significance greater than 5$sigma$ at 99%C.L. The intrinsic $^{210}$Bi is an important background for this analysis due to its similar spectral shape to that of CNO neutrinos. $^{210}$Bi can be measured through its daughter $^{210}$Po which can be distinguished through an event-by-event basis via pulse shape discrimination. However, this required reducing the convective motions in the scintillator that brought additional $^{210}$Po from peripheral sources. This was made possible through the thermal insulation and stabilization campaign performed between 2015 and 2016. This article will explain the strategy and the different methods performed to extract the $^{210}$Bi upper limit in Phase-III (Jul 2016- Feb 2020) of the experiment through the analysis of $^{210}$Po in the cleanest region of the detector called the Low Polonium Field.
Neutrinos are elementary particles which are known since many years as fundamental messengers from the interior of the Sun. The Standard Solar Model, which gives a theoretical description of all nuclear processes which happen in our star, predicts th at roughly 99% of the energy produced is coming from a series of processes known as the pp chain. Such processes have been studied in detail over the last years by means of neutrinos, thanks also to the important measurements provided by the Borexino experiment. The remaining 1% is instead predicted to come from a separate loop-process, known as the CNO cycle. This sub-dominant process is theoretically well understood, but has so far escaped any direct observation. Another fundamental aspect is that the CNO cycle is indeed the main nuclear engine in stars more massive than the Sun. In 2020, thanks to the unprecedented radio-purity and temperature control achieved by the Borexino detector over recent years, the first ever detection of neutrinos from the CNO cycle has been finally announced. The milestone result confirms the existence of this nuclear fusion process in our Universe. Here, the details of the detector stabilization and the analysis techniques adopted are reported.
The KArlsruhe TRItium Neutrino (KATRIN) experiment, which aims to make a direct and model-independent determination of the absolute neutrino mass scale, is a complex experiment with many components. More than 15 years ago, we published a technical de sign report (TDR) [https://publikationen.bibliothek.kit.edu/270060419] to describe the hardware design and requirements to achieve our sensitivity goal of 0.2 eV at 90% C.L. on the neutrino mass. Since then there has been considerable progress, culminating in the publication of first neutrino mass results with the entire beamline operating [arXiv:1909.06048]. In this paper, we document the current state of all completed beamline components (as of the first neutrino mass measurement campaign), demonstrate our ability to reliably and stably control them over long times, and present details on their respective commissioning campaigns.
We report on the data set, data handling, and detailed analysis techniques of the first neutrino-mass measurement by the Karlsruhe Tritium Neutrino (KATRIN) experiment, which probes the absolute neutrino-mass scale via the $beta$-decay kinematics of molecular tritium. The source is highly pure, cryogenic T$_2$ gas. The $beta$ electrons are guided along magnetic field lines toward a high-resolution, integrating spectrometer for energy analysis. A silicon detector counts $beta$ electrons above the energy threshold of the spectrometer, so that a scan of the thresholds produces a precise measurement of the high-energy spectral tail. After detailed theoretical studies, simulations, and commissioning measurements, extending from the molecular final-state distribution to inelastic scattering in the source to subtleties of the electromagnetic fields, our independent, blind analyses allow us to set an upper limit of 1.1 eV on the neutrino-mass scale at a 90% confidence level. This first result, based on a few weeks of running at a reduced source intensity and dominated by statistical uncertainty, improves on prior limits by nearly a factor of two. This result establishes an analysis framework for future KATRIN measurements, and provides important input to both particle theory and cosmology.
This article describes BabyIAXO, an intermediate experimental stage of the International Axion Observatory (IAXO), proposed to be sited at DESY. IAXO is a large-scale axion helioscope that will look for axions and axion-like particles (ALPs), produce d in the Sun, with unprecedented sensitivity. BabyIAXO is conceived to test all IAXO subsystems (magnet, optics and detectors) at a relevant scale for the final system and thus serve as prototype for IAXO, but at the same time as a fully-fledged helioscope with relevant physics reach itself, and with potential for discovery. The BabyIAXO magnet will feature two 10 m long, 70 cm diameter bores, and will host two detection lines (optics and detector) of dimensions similar to the final ones foreseen for IAXO. BabyIAXO will detect or reject solar axions or ALPs with axion-photon couplings down to $g_{agamma} sim 1.5 times 10^{-11}$ GeV$^{-1}$, and masses up to $m_asim 0.25$ eV. BabyIAXO will offer additional opportunities for axion research in view of IAXO, like the development of precision x-ray detectors to identify particular spectral features in the solar axion spectrum, and the implementation of radiofrequency-cavity-based axion dark matter setups.
For most of their existence stars are fueled by the fusion of hydrogen into helium proceeding via two theoretically well understood processes, namely the $pp$ chain and the CNO cycle. Neutrinos emitted along such fusion processes in the solar core ar e the only direct probe of the deep interior of the star. A complete spectroscopy of neutrinos from the {it pp} chain, producing about 99% of the solar energy, has already been performed cite{bib:Nature-2018}. Here, we report the direct observation, with a high statistical significance, of neutrinos produced in the CNO cycle in the Sun. This is the first experimental evidence of this process obtained with the unprecedentedly radio-pure large-volume liquid-scintillator Borexino detector located at the underground Laboratori Nazionali del Gran Sasso in Italy. The main difficulty of this experimental effort is to identify the excess of the few counts per day per 100 tonnes of target due to CNO neutrino interactions above the backgrounds. A novel method to constrain the rate of bi contaminating the scintillator relies on the thermal stabilisation of the detector achieved over the past 5 years. In the CNO cycle, the hydrogen fusion is catalyzed by the carbon (C) - nitrogen (N) - oxygen (O) and thus its rate, as well as the flux of emitted CNO neutrinos, directly depends on the abundance of these elements in solar core. Therefore, this result paves the way to a direct measurement of the solar metallicity by CNO neutrinos. While this result quantifies the relative contribution of the CNO fusion in the Sun to be of the order of 1%, this process is dominant in the energy production of massive stars. The occurrence of the primary mechanism for the stellar conversion of hydrogen into helium in the Universe has been proven.
Neutrinos emitted in the carbon, nitrogen, oxygen (CNO) fusion cycle in the Sun are a sub-dominant, yet crucial component of solar neutrinos whose flux has not been measured yet. The Borexino experiment at the Laboratori Nazionali del Gran Sasso (Ita ly) has a unique opportunity to detect them directly thanks to the detectors radiopurity and the precise understanding of the detector backgrounds. We discuss the sensitivity of Borexino to CNO neutrinos, which is based on the strategies we adopted to constrain the rates of the two most relevant background sources, pep neutrinos from the solar pp-chain and Bi-210 beta decays originating in the intrinsic contamination of the liquid scintillator with Pb-210. Assuming the CNO flux predicted by the high-metallicity Standard Solar Model and an exposure of 1000 daysx71.3 t, Borexino has a median sensitivity to CNO neutrino higher than 3 sigma. With the same hypothesis the expected experimental uncertainty on the CNO neutrino flux is 23%, provided the uncertainty on the independent estimate of the Bi-210 interaction rate is 1.5 cpd/100t. Finally, we evaluated the expected uncertainty of the C and N abundances and the expected discrimination significance between the high and low metallicity Standard Solar Models (HZ and LZ) with future more precise measurement of the CNO solar neutrino flux.
The KArlsruhe TRItium Neutrino experiment (KATRIN) aims to determine the effective electron (anti)neutrino mass with a sensitivity of $0.2textrm{ eV/c}^2$ (90$%$ C.L.) by precisely measuring the endpoint region of the tritium $beta$-decay spectrum. I t uses a tandem of electrostatic spectrometers working as MAC-E (magnetic adiabatic collimation combined with an electrostatic) filters. In the space between the pre-spectrometer and the main spectrometer, an unavoidable Penning trap is created when the superconducting magnet between the two spectrometers, biased at their respective nominal potentials, is energized. The electrons accumulated in this trap can lead to discharges, which create additional background electrons and endanger the spectrometer and detector section downstream. To counteract this problem, electron catchers were installed in the beamline inside the magnet bore between the two spectrometers. These catchers can be moved across the magnetic-flux tube and intercept on a sub-ms time scale the stored electrons along their magnetron motion paths. In this paper, we report on the design and the successful commissioning of the electron catchers and present results on their efficiency in reducing the experimental background.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا