ترغب بنشر مسار تعليمي؟ اضغط هنا

Suppression of Penning discharges between the KATRIN spectrometers

97   0   0.0 ( 0 )
 نشر من قبل Mariia Fedkevych
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The KArlsruhe TRItium Neutrino experiment (KATRIN) aims to determine the effective electron (anti)neutrino mass with a sensitivity of $0.2textrm{ eV/c}^2$ (90$%$ C.L.) by precisely measuring the endpoint region of the tritium $beta$-decay spectrum. It uses a tandem of electrostatic spectrometers working as MAC-E (magnetic adiabatic collimation combined with an electrostatic) filters. In the space between the pre-spectrometer and the main spectrometer, an unavoidable Penning trap is created when the superconducting magnet between the two spectrometers, biased at their respective nominal potentials, is energized. The electrons accumulated in this trap can lead to discharges, which create additional background electrons and endanger the spectrometer and detector section downstream. To counteract this problem, electron catchers were installed in the beamline inside the magnet bore between the two spectrometers. These catchers can be moved across the magnetic-flux tube and intercept on a sub-ms time scale the stored electrons along their magnetron motion paths. In this paper, we report on the design and the successful commissioning of the electron catchers and present results on their efficiency in reducing the experimental background.



قيم البحث

اقرأ أيضاً

The KArlsruhe TRItium Neutrino experiment KATRIN aims at improving the upper limit of the mass of the electron antineutrino to about 0.2 eV (90% c.l.) by investigating the beta-decay of tritium gas molecules. The experiment is currently under constru ction to start first data taking in 2012. One source of systematic uncertainties in the KATRIN experiment is the formation of ion clusters when tritium decays and decay products interact with residual tritium molecules. It is essential to monitor the abundances of these clusters since they have different final state energies than tritium ions. For this purpose, a prototype of a cylindrical Penning trap has been constructed and tested at the Max-Planck-Institute for Nuclear Physics in Heidelberg, which will be installed in the KATRIN beam line. This system employs the technique of Fourier-Transform Ion-Cyclotron-Resonance in order to measure the abundances of the different stored ion species.
167 - D. Beck , K. Blaum , G. Bollen 2008
Significant systematic errors in high-precision Penning trap mass spectrometry can result from electric and magnetic field imperfections. An experimental procedure to minimize these uncertainties is presented for the on-line Penning trap mass spectro meter ISOLTRAP, located at ISOLDE/CERN. The deviations from the ideal magnetic and electric fields are probed by measuring the cyclotron frequency and the reduced cyclotron frequency, respectively, of stored ions as a function of the time between the ejection of ions from the preparation trap and their capture in the precision trap, which influences the energy of their axial motion. The correction parameters are adjusted to minimize the frequency shifts.
The primary objective of the KATRIN experiment is to probe the absolute neutrino mass scale with a sensitivity of 200 meV (90% C.L.) by precision spectroscopy of tritium beta-decay. To achieve this, a low background of the order of 10^(-2) cps in the region of the tritium beta-decay endpoint is required. Measurements with an electrostatic retarding spectrometer have revealed that electrons, arising from nuclear decays in the volume of the spectrometer, are stored over long time periods and thereby act as a major source of background exceeding this limit. In this paper we present a novel active background reduction method based on stochastic heating of stored electrons by the well-known process of electron cyclotron resonance (ECR). A successful proof-of-principle of the ECR technique was demonstrated in test measurements at the KATRIN pre-spectrometer, yielding a large reduction of the background rate. In addition, we have carried out extensive Monte Carlo simulations to reveal the potential of the ECR technique to remove all trapped electrons within negligible loss of measurement time in the main spectrometer. This would allow the KATRIN experiment attaining its full physics potential.
The KATRIN experiment is designed to measure the absolute neutrino mass scale with a sensitivity of 200 meV at 90% C.L. by high resolution tritium beta-spectroscopy. A low background level of 10 mHz at the beta-decay endpoint is required in order to achieve the design sensitivity. In this paper we discuss a novel background source arising from magnetically trapped keV electrons in electrostatic retarding spectrometers. The main sources of these electrons are alpha-decays of the radon isotopes (219,220)Rn as well as beta-decays of tritium in the volume of the spectrometers. We characterize the expected background signal by extensive MC simulations and investigate the impact on the KATRIN neutrino mass sensitivity. From these results we refine design parameters for the spectrometer vacuum system and propose active background reduction methods to meet the stringent design limits for the overall background rate.
The KATRIN experiment will determine the effective electron anti-neutrino mass with a sensitivity of 200 meV/c$^2$ at 90% CL. The energy analysis of tritium $beta$-decay electrons will be performed by a tandem setup of electrostatic retarding spectro meters which have to be operated at very low background levels of $<10^{-2}$ counts per second. This benchmark rate can be exceeded by background processes resulting from the emanation of single $^{219,220}$Rn atoms from the inner spectrometer surface and an array of non-evaporable getter strips used as main vacuum pump. Here we report on a the impact of a cryogenic technique to reduce this radon-induced background in electrostatic spectrometers. It is based on installing a liquid nitrogen cooled copper baffle in the spectrometer pump port to block the direct line of sight between the getter pump, which is the main source of $^{219}$Rn, and the sensitive flux tube volume. This cold surface traps a large fraction of emanated radon atoms in a region outside of the active flux tube, preventing background there. We outline important baffle design criteria to maximize the efficiency for the adsorption of radon atoms, describe the baffle implemented at the KATIRN Pre-Spectrometer test set-up, and report on its initial performance in suppressing radon-induced background.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا