ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis methods for the first KATRIN neutrino-mass measurement

74   0   0.0 ( 0 )
 نشر من قبل Diana Parno
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the data set, data handling, and detailed analysis techniques of the first neutrino-mass measurement by the Karlsruhe Tritium Neutrino (KATRIN) experiment, which probes the absolute neutrino-mass scale via the $beta$-decay kinematics of molecular tritium. The source is highly pure, cryogenic T$_2$ gas. The $beta$ electrons are guided along magnetic field lines toward a high-resolution, integrating spectrometer for energy analysis. A silicon detector counts $beta$ electrons above the energy threshold of the spectrometer, so that a scan of the thresholds produces a precise measurement of the high-energy spectral tail. After detailed theoretical studies, simulations, and commissioning measurements, extending from the molecular final-state distribution to inelastic scattering in the source to subtleties of the electromagnetic fields, our independent, blind analyses allow us to set an upper limit of 1.1 eV on the neutrino-mass scale at a 90% confidence level. This first result, based on a few weeks of running at a reduced source intensity and dominated by statistical uncertainty, improves on prior limits by nearly a factor of two. This result establishes an analysis framework for future KATRIN measurements, and provides important input to both particle theory and cosmology.



قيم البحث

اقرأ أيضاً

We report on the neutrino mass measurement result from the first four-week science run of the Karlsruhe Tritium Neutrino experiment KATRIN in spring 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are energy analyzed by a high-resolution MAC-E filter. A fit of the integrated electron spectrum over a narrow interval around the kinematic endpoint at 18.57 keV gives an effective neutrino mass square value of $(-1.0^{+0.9}_{-1.1})$ eV$^2$. From this we derive an upper limit of 1.1 eV (90$%$ confidence level) on the absolute mass scale of neutrinos. This value coincides with the KATRIN sensitivity. It improves upon previous mass limits from kinematic measurements by almost a factor of two and provides model-independent input to cosmological studies of structure formation.
We report the first measurement of monoenergetic muon neutrino charged current interactions. MiniBooNE has isolated 236 MeV muon neutrino events originating from charged kaon decay at rest ($K^+ rightarrow mu^+ u_mu$) at the NuMI beamline absorber. These signal $ u_mu$-carbon events are distinguished from primarily pion decay in flight $ u_mu$ and $overline{ u}_mu$ backgrounds produced at the target station and decay pipe using their arrival time and reconstructed muon energy. The significance of the signal observation is at the 3.9$sigma$ level. The muon kinetic energy, neutrino-nucleus energy transfer ($omega=E_ u-E_mu$), and total cross section for these events is extracted. This result is the first known-energy, weak-interaction-only probe of the nucleus to yield a measurement of $omega$ using neutrinos, a quantity thus far only accessible through electron scattering.
56 - Yung-Ruey Yen 2019
The KArlsruhe TRItium Neutrino (KATRIN) experiment is designed to measure tritium $beta$-decay spectrum with enough precision to be sensitive to neutrino mass down to 0.2eV at 90$%$ Confidence Level. After an initial first tritium run in the summer o f 2018, KATRIN is taking tritium data in 2019 that should lead to a first neutrino mass result. The $beta$ spectral shape of the tritium decay is also sensitive to four countershaded Lorentz Violating (LV), oscillation-free operators within the Standard-Model Extension that may be quite large. The status and outlook of KATRIN to produce physics results, including in the LV sector, are discussed.
We report the results of the second measurement campaign of the Karlsruhe Tritium Neutrino (KATRIN) experiment. KATRIN probes the effective electron anti-neutrino mass, $m_{ u}$, via a high-precision measurement of the tritium $beta$-decay spectrum c lose to its endpoint at $18.6,mathrm{keV}$. In the second physics run presented here, the source activity was increased by a factor of 3.8 and the background was reduced by $25,%$ with respect to the first campaign. A sensitivity on $m_{ u}$ of $0.7,mathrm{eV/c^2}$ at $90,%$ confidence level (CL) was reached. This is the first sub-eV sensitivity from a direct neutrino-mass experiment. The best fit to the spectral data yields $m_{ u}^2 = (0.26pm0.34),mathrm{eV^4/c^4}$, resulting in an upper limit of $m_{ u}<0.9,mathrm{eV/c^2}$ ($90,%$ CL). By combining this result with the first neutrino mass campaign, we find an upper limit of $m_{ u}<0.8,mathrm{eV/c^2}$ ($90,%$ CL).
KATRIN is a very large scale tritium-beta-decay experiment to determine the mass of the neutrino. It is presently under construction at the Forschungszentrum Karlsruhe, and makes use of the Tritium Laboratory built there for the ITER project. The com bination of a very large retarding-potential electrostatic-magnetic spectrometer and an intense gaseous molecular tritium source makes possible a sensitivity to neutrino mass of 0.2 eV, about an order of magnitude below present laboratory limits. The measurement is kinematic and independent of whether the neutrino is Dirac or Majorana. The status of the project is summarized briefly in this report.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا