ترغب بنشر مسار تعليمي؟ اضغط هنا

First detection of CNO neutrinos with Borexino

129   0   0.0 ( 0 )
 نشر من قبل Giulio Settanta
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Neutrinos are elementary particles which are known since many years as fundamental messengers from the interior of the Sun. The Standard Solar Model, which gives a theoretical description of all nuclear processes which happen in our star, predicts that roughly 99% of the energy produced is coming from a series of processes known as the pp chain. Such processes have been studied in detail over the last years by means of neutrinos, thanks also to the important measurements provided by the Borexino experiment. The remaining 1% is instead predicted to come from a separate loop-process, known as the CNO cycle. This sub-dominant process is theoretically well understood, but has so far escaped any direct observation. Another fundamental aspect is that the CNO cycle is indeed the main nuclear engine in stars more massive than the Sun. In 2020, thanks to the unprecedented radio-purity and temperature control achieved by the Borexino detector over recent years, the first ever detection of neutrinos from the CNO cycle has been finally announced. The milestone result confirms the existence of this nuclear fusion process in our Universe. Here, the details of the detector stabilization and the analysis techniques adopted are reported.



قيم البحث

اقرأ أيضاً

Borexino collaboration reported about first measurement of solar CNO-$ u$ interaction rate in Borexino detector. This result is consistent with Hydridic Earth model prediction about the contribution of $^{40}$K geo-antineutrino interactions in single Borexino events. The potassium abundance in the Earth in the range $1 div 1.5$% of the Earth mass could give the observed enhancement of counting rate above expected CNO-$ u$ counting rate. The Earth intrinsic heat flux must be in the range $200 div 300$ TW for this potassium abundance. This value of the heat flux can explain the ocean heating observed by the project ARGO. We consider that Hydridic Earth model actually corresponds better to CNO-$ u$ Borexino results than Silicate Earth model.
Neutrinos emitted in the carbon, nitrogen, oxygen (CNO) fusion cycle in the Sun are a sub-dominant, yet crucial component of solar neutrinos whose flux has not been measured yet. The Borexino experiment at the Laboratori Nazionali del Gran Sasso (Ita ly) has a unique opportunity to detect them directly thanks to the detectors radiopurity and the precise understanding of the detector backgrounds. We discuss the sensitivity of Borexino to CNO neutrinos, which is based on the strategies we adopted to constrain the rates of the two most relevant background sources, pep neutrinos from the solar pp-chain and Bi-210 beta decays originating in the intrinsic contamination of the liquid scintillator with Pb-210. Assuming the CNO flux predicted by the high-metallicity Standard Solar Model and an exposure of 1000 daysx71.3 t, Borexino has a median sensitivity to CNO neutrino higher than 3 sigma. With the same hypothesis the expected experimental uncertainty on the CNO neutrino flux is 23%, provided the uncertainty on the independent estimate of the Bi-210 interaction rate is 1.5 cpd/100t. Finally, we evaluated the expected uncertainty of the C and N abundances and the expected discrimination significance between the high and low metallicity Standard Solar Models (HZ and LZ) with future more precise measurement of the CNO solar neutrino flux.
Liquid scintillator detectors play a central role in the detection of neutrinos from various sources. In particular, it is the only technique used so far for the precision spectroscopy of sub-MeV solar neutrinos, as demonstrated by the Borexino exper iment at the Gran Sasso National Laboratory in Italy. The benefit of a high light yield, and thus a low energy threshold and a good energy resolution, comes at the cost of the directional information featured by water Cherenkov detectors, measuring $^8$B solar neutrinos above a few MeV. In this paper we provide the first directionality measurement of sub-MeV solar neutrinos which exploits the correlation between the first few detected photons in each event and the known position of the Sun for each event. This is also the first signature of directionality in neutrinos elastically scattering off electrons in a liquid scintillator target. This measurement exploits the sub-dominant, fast Cherenkov light emission that precedes the dominant yet slower scintillation light signal. Through this measurement, we have also been able to extract the rate of $^{7}$Be solar neutrinos in Borexino. The demonstration of directional sensitivity in a traditional liquid scintillator target paves the way for the possible exploitation of the Cherenkov light signal in future kton-scale experiments using liquid scintillator targets. Directionality is important for background suppression as well as the disentanglement of signals from various sources.
We report on searches for neutrinos and antineutrinos from astrophysical sources performed with the Borexino detector at the Laboratori Nazionali del Gran Sasso in Italy. Electron antineutrinos ($bar{ u}_e$) are detected in an organic liquid scintill ator through the inverse $beta$-decay reaction. In the present work we set model-independent upper limits in the energy range 1.8-16.8 MeV on neutrino fluxes from unknown sources that improve our previous results, on average, by a factor 2.5. Using the same data set, we first obtain experimental constraints on the diffuse supernova $bar{ u}_e$ fluxes in the previously unexplored region below 8 MeV. A search for $bar{ u}_e$ in the solar neutrino flux is also presented: the presence of $bar{ u}_e$ would be a manifestation of a non-zero anomalous magnetic moment of the neutrino, making possible its conversion to antineutrinos in the strong magnetic field of the Sun. We obtain a limit for a solar $bar{ u}_e$ flux of 384 cm$^{-2}$s$^{-1}$ (90% C.L.), assuming an undistorted solar $^{8}$B neutrinos energy spectrum, that corresponds to a transition probability $p_{ u_e rightarrow bar u_{e}}<$ 7.2$times$10$^{-5}$ (90% C.L.) for E$_{bar { u}_e}$ $>$ 1.8 MeV. At lower energies, by investigating the spectral shape of elastic scattering events, we obtain a new limit on solar $^{7}$Be-$ u_e$ conversion into $bar{ u}_e$ of $p_{ u_e rightarrow bar u_{e}}<$ 0.14 (90% C.L.) at 0.862 keV. Last, we investigate solar flares as possible neutrino sources and obtain the strongest up-to-date limits on the fluence of neutrinos of all flavor neutrino below 3-7 ,MeV. Assuming the neutrino flux to be proportional to the flares intensity, we exclude an intense solar flare as the cause of the observed excess of events in run 117 of the Cl-Ar Homestake experiment.
149 - G. Bellini , J. Benziger , D. Bick 2013
We present a measurement of the geo--neutrino signal obtained from 1353 days of data with the Borexino detector at Laboratori Nazionali del Gran Sasso in Italy. With a fiducial exposure of (3.69 $pm$ 0.16) $times$ $10^{31}$ proton $times$ year after all selection cuts and background subtraction, we detected (14.3 $pm$ 4.4) geo-neutrino events assuming a fixed chondritic mass Th/U ratio of 3.9. This corresponds to a geo-neutrino signal $S_{geo}$ = (38.8 $pm$ 12.0) TNU with just a 6 $times$ $10^{-6}$ probability for a null geo-neutrino measurement. With U and Th left as free parameters in the fit, the relative signals are $S_{mathrm{Th}}$ = (10.6 $pm$ 12.7) TNU and $S_mathrm{U}$ = (26.5 $pm$ 19.5) TNU. Borexino data alone are compatible with a mantle geo--neutrino signal of (15.4 $pm$ 12.3) TNU, while a combined analysis with the KamLAND data allows to extract a mantle signal of (14.1 $pm$ 8.1) TNU. Our measurement of a reactor anti--neutrino signal $S_{react}$ = 84.5$^{+19.3}_{-18.9}$ TNU is in agreement with expectations in the presence of neutrino oscillations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا