ترغب بنشر مسار تعليمي؟ اضغط هنا

55 - Juntao Song , Emil Prodan 2015
In the strictly periodic setting, the electric polarization of inversion-symmetric solids with and without time-reversal symmetry and the isotropic magneto-electric response function of time-reversal symmetric insulators are known to be topological i nvariants displaying an exact $mathbb Z_2$ quantization. This quantization is stabilized by the symmetries. In the present work, we investigate the fate of such symmetry-stabilized topological invariants in the presence of a disorder which breaks the symmetries but restores them on average. Using a rigorous analysis, we conclude that the strict quantization still holds in these conditions. Numerical calculations confirm this prediction.
The Weyl semimetal (WSM) is a newly proposed quantum state of matter. It has Weyl nodes in bulk excitations and Fermi arcs surface states. We study the effects of disorder and localization in WSMs and find three exotic phase transitions. (I) Two Weyl nodes near the Brillouin zone boundary can be annihilated pairwise by disorder scattering, resulting in the opening of a topologically nontrivial gap and a transition from a WSM to a three-dimensional (3D) quantum anomalous Hall state. (II) When the two Weyl nodes are well separated in momentum space, the emergent bulk extended states can give rise to a direct transition from a WSM to a 3D diffusive anomalous Hall metal. (III) Two Weyl nodes can emerge near the zone center when an insulating gap closes with increasing disorder, enabling a direct transition from a normal band insulator to a WSM. We determine the phase diagram by numerically computing the localization length and the Hall conductivity, and propose that the exotic phase transitions can be realized on a photonic lattice.
We propose a nonlocal manipulation method to build topological devices through emerging robust helical surface states in Z_2=0 topological systems. Specifically, in a ribbon of Z_2=0 Bernevig- Hughes-Zhang (BHZ) model with finite-size effect, if magn etic impurities are doped on the top (bottom) edge, the edge states on the bottom (top) edge can be altered according to the strengths and directions of these magnetic impurities. Consequently, the backscattering between the emerging robust helical edge states and gapped normal edge states due to finite-size confinement is also changed, which makes the system alternate between a perfect one-channel conductor and a perfect insulator. This effect allows us to fabricate topological devices with high on-off ratio. Moreover, it can also be generalized to 3D model and more realistic Cd3As2 type Dirac semimetals.
The effect of strong disorder on chiral-symmetric 3-dimensional lattice models is investigated via analytical and numerical methods. The phase diagrams of the models are computed using the non-commutative winding number, as functions of disorder stre ngth and models parameters. The localized/delocalized characteristic of the quantum states is probed with level statistics analysis. Our study re-confirms the accurate quantization of the non-commutative winding number in the presence of strong disorder, and its effectiveness as a numerical tool. Extended bulk states are detected above and below the Fermi level, which are observed to undergo the so called levitation and pair annihilation process when the system is driven through a topological transition. This suggests that the bulk invariant is carried by these extended states, in stark contrast with the 1-dimensional case where the extended states are completely absent and the bulk invariant is carried by the localized states.
65 - Juntao Song , Emil Prodan 2014
Using an explicit 1-dimensional model, we provide direct evidence that the one-dimensional topological phases from the AIII and BDI symmetry classes follow a $mathbb Z$-classification, even in the strong disorder regime when the Fermi level is embedd ed in a dense localized spectrum. The main tool for our analysis is the winding number $ u$, in the non-commutative formulation introduced in I. Mondragon-Shem, J. Song, T. L. Hughes, and E. Prodan, arXiv:1311.5233. For both classes, by varying the parameters of the model and/or the disorder strength, a cascade of sharp topological transitions $ u=0 rightarrow u=1 rightarrow u=2$ is generated, in the regime where the insulating gap is completely filled with the localized spectrum. We demonstrate that each topological transition is accompanied by an Anderson localization-delocalization transition. Furthermore, to explicitly rule out a $mathbb Z_2$ classification, a topological transition between $ u=0$ and $ u=2$ is generated. These two phases are also found to be separated by an Anderson localization-delocalization transition, hence proving their distinct identity.
120 - Yang Liu , Juntao Song , Yuxian Li 2013
The electron transport of different conical valleys is investigated in graphene with extended line-defects. Intriguingly, the electron with a definite incident angle can be completely modulated into one conical valley by a resonator which consists of several paralleling line-defects. The related incident angle can be controlled easily by tuning the parameters of the resonator. Therefore, a controllable 100% valley polarization, as well as the detection of the valley polarization, can be realized conveniently by tuning the number of line-defects and the distance between two nearest neighbouring line-defects. This fascinating finding opens a way to realize the valley polarization by line-defects. With the advancement of experimental technologies, this resonator is promising to be realized and thus plays a key role in graphene valleytronics.
Using a tight-binding model, we study a line defect in graphene where a bulk energy gap is opened by sublattice symmetry breaking. It is found that sublattice symmetry breaking may induce many configurations that correspond to different band spectra. In particular, a gapless state is observed for a configuration which hold a mirror symmetry with respect to the line defect. We find that this gapless state originates from the line defect and is independent of the width of the graphene ribbon, the location of the line defect, and the potentials in the edges of the ribbon. In particular, the gapless state can be controlled by the gate voltage embedded below the line defect. Finally, this result is supported with conductance calculations. This study shows how a quantum channel could be constructed using a line defect, and how the quantum channel can be controlled by tuning the gate voltage embedded below the line defect.
This paper details the investigation of the influence of different disorders in two-dimensional topological insulator systems. Unlike the phase transitions to topological Anderson insulator induced by normal Anderson disorder, a different physical pi cture arises when bond disorder is considered. Using Born approximation theory, an explanation is given as to why bond disorder plays a different role in phase transition than does Anderson disorder. By comparing phase diagrams, conductance, conductance fluctuations, and the localization length for systems with different types of disorder, a consistent conclusion is obtained. The results indicate that a topological Anderson insulator is dependent on the type of disorder. These results are important for the doping processes used in preparation of topological insulators.
The electron transport through a three-terminal single-molecular transistor (SMT) is theoretically studied. We find that the differential conductance of the third and weakly coupled terminal versus its voltage matches well with the spectral function versus the energy when certain conditions are met. Particularly, this excellent matching is maintained even for complicated structure of the phonon-assisted side peaks. Thus, this device offers an experimental approach to explore the shape of the phonon-assisted spectral function in detail. In addition we discuss the conditions of a perfect matching. The results show that at low temperatures the matching survives regardless of the bias and the energy levels of the SMT. However, at high temperatures, the matching is destroyed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا