ﻻ يوجد ملخص باللغة العربية
This paper details the investigation of the influence of different disorders in two-dimensional topological insulator systems. Unlike the phase transitions to topological Anderson insulator induced by normal Anderson disorder, a different physical picture arises when bond disorder is considered. Using Born approximation theory, an explanation is given as to why bond disorder plays a different role in phase transition than does Anderson disorder. By comparing phase diagrams, conductance, conductance fluctuations, and the localization length for systems with different types of disorder, a consistent conclusion is obtained. The results indicate that a topological Anderson insulator is dependent on the type of disorder. These results are important for the doping processes used in preparation of topological insulators.
The effect of surface disorder on electronic systems is particularly interesting for topological phases with surface and edge states. Using exact diagonalization, it has been demonstrated that the surface states of a 3D topological insulator survive
The realization of the quantum anomalous Hall (QAH) effect without magnetic doping attracts intensive interest since magnetically doped topological insulators usually possess inhomogeneity of ferromagnetic order. Here, we propose a different strategy
Although topological Anderson insulator has been predicted in 2009, the lasting investigations of this disorder established nontrivial state results in only two experimental observations in cold atoms [Science, {bf 362 },929 (2018)] and in photonic c
It has been proposed that disorder may lead to a new type of topological insulator, called topological Anderson insulator (TAI). Here we examine the physical origin of this phenomenon. We calculate the topological invariants and density of states of
Exponential localization of wavefunctions in lattices, whether in real or synthetic dimensions, is a fundamental wave interference phenomenon. Localization of Bloch-type functions in space-periodic lattice, triggered by spatial disorder, is known as