ترغب بنشر مسار تعليمي؟ اضغط هنا

A controllable valley polarization in Graphene

165   0   0.0 ( 0 )
 نشر من قبل Juntao Song
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electron transport of different conical valleys is investigated in graphene with extended line-defects. Intriguingly, the electron with a definite incident angle can be completely modulated into one conical valley by a resonator which consists of several paralleling line-defects. The related incident angle can be controlled easily by tuning the parameters of the resonator. Therefore, a controllable 100% valley polarization, as well as the detection of the valley polarization, can be realized conveniently by tuning the number of line-defects and the distance between two nearest neighbouring line-defects. This fascinating finding opens a way to realize the valley polarization by line-defects. With the advancement of experimental technologies, this resonator is promising to be realized and thus plays a key role in graphene valleytronics.


قيم البحث

اقرأ أيضاً

440 - L.E. Golub , S.A. Tarasenko 2014
The valley degeneracy of electron states in graphene stimulates intensive research of valley-related optical and transport phenomena. While many proposals on how to manipulate valley states have been put forward, experimental access to the valley pol arization in graphene is still a challenge. Here, we develop a theory of the second optical harmonic generation in graphene and show that this effect can be used to measure the degree and sign of the valley polarization. We show that, at the normal incidence of radiation, the second harmonic generation stems from imbalance of carrier populations in the valleys. The effect has a specific polarization dependence reflecting the trigonal symmetry of electron valley and is resonantly enhanced if the energy of incident photons is close to the Fermi energy.
Valley polarization in graphene breaks inversion symmetry and therefore leads to second-harmonic generation. We present a complete theory of this effect within a single-particle approximation. It is shown that this may be a sensitive tool to measure the valley polarization created, e.g., by polarized light and, thus, can be used for a development of ultrafast valleytronics in graphene.
Considering the difference of energy bands in graphene and silicene, we put forward a new model of the graphene-silicene-graphene (GSG) heterojunction. In the GSG, we study the valley polarization properties in a zigzag nanoribbon in the presence of an external electric field. We find the energy range associated with the bulk gap of silicene has a valley polarization more than 95%. Under the protection of the topological edge states of the silicene, the valley polarization remains even the small non-magnetic disorder is introduced. These results have certain practical significance in applications for future valley valve.
We study theoretically interaction of a bilayer graphene with a circularly polarized ultrafast optical pulse of a single oscillation at an oblique incidence. The normal component of the pulse breaks the inversion symmetry of the system and opens up a dynamical band-gap, due to which a valley-selective population of the conduction band becomes sensitive to the angle of incident of the pulse. We show that the magnitude of the valley polarization can be controlled by the angle of incidence, the amplitude, and the angle of in-plane polarization of the chiral optical pulse. Subsequently, a sequence of a circularly polarized pulse followed by a linearly polarized femtosecond-long pulse can be used to control the valley polarization created by the preceding pulse. Generally, the linearly polarized pulse depolarizes the system. The magnitude of such a depolarization depends on the amplitude, and the in-plane polarization angle of the linearly polarized pulse. Our protocol provides a favorable platform for applications in valleytronics.
We report magneto-absorption spectroscopy of gated WSe$_2$ monolayers in high magnetic fields up to 60~T. When doped with a 2D Fermi sea of mobile holes, well-resolved sequences of optical transitions are observed in both $sigma^pm$ circular polariza tions, which unambiguously and separately indicate the number of filled Landau levels (LLs) in both $K$ and $K$ valleys. This reveals the interaction-enhanced valley Zeeman energy, which is found to be highly tunable with hole density $p$. We exploit this tunability to align the LLs in $K$ and $K$, and find that the 2D hole gas becomes unstable against small changes in LL filling and can spontaneously valley-polarize. These results cannot be understood within a single-particle picture, highlighting the importance of exchange interactions in determining the ground state of 2D carriers in monolayer semiconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا