ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic impurities deposited on topological superconductor candidate PbTaSe2 can introduce a non-splitting zero-energy state inside the superconducting gap, which has been proposed as a field-free platform for topological zero modes. However, it is still unclear how robust the topological state in PbTaSe2 is against magnetic impurities, which is related to the topological nature of the zero-energy state as well as its potential for quantum computation. In this work, we use scanning tunneling microscopy (STM) to study the topological surface state in the normal state of PbTaSe2 under the perturbation of magnetic impurities. We visualize the quasi-particle interference (QPI) arising from the topological surface state. We then deposit Fe impurities on the surface to form atomic Fe adatoms. We find that each Fe adatom sits at a unique interstitial position on the surface and features a local state at high energies, both of which are consistent with our first-principles calculation that further reveals its large magnetic moment. Our systematic Fe deposition and subsequent measurements show that the arc-like QPI pattern at the Fermi energy is robust with up to 3% Fe coverage where the atomic nature of Fe adatoms still holds. Our results provide evidence that the topological surface state at the Fermi energy in PbTaSe2 is robust against dilute magnetic impurities.
Kagome superconductors with Tc up to 7K have been discovered over 40 years. Recently, unconventional chiral charge order has been reported in kagome superconductor KV3Sb5, with an ordering temperature of one order of magnitude higher than the TC. How ever, the chirality of the charge order has not been reported in the cousin kagome superconductor CsV3Sb5, and the electronic nature of the chirality remains elusive. In this letter, we report the observation of electronic chiral charge order in CsV3Sb5 via scanning tunneling microscopy (STM). We observe a 2x2 charge modulation and a 1x4 superlattice in both topographic data and tunneling spectroscopy. 2x2 charge modulation is highly anticipated as a charge order by fundamental kagome lattice models at van Hove filling, and is shown to exhibit intrinsic chirality. We find that the 1x4 superlattices forms various small domain walls, and can be a surface effect as supported by our first-principles calculations. Crucially, we find that the amplitude of the energy gap opened by the charge order exhibits real space modulations, and features 2x2 wave vectors with chirality, highlighting the electronic nature of the chiral charge order. STM study at 0.4K reveals a superconducting energy gap with a gap size 2{Delta}=0.85meV, which estimates a moderate superconductivity coupling strength with 2{Delta}/kBTc=3.9. When further applying a c-axis magnetic field, vortex core bound states are observed within this gap, indicative of clean-limit superconductivity.
Superconductors with kagome lattices have been identified for over 40 years, with a superconducting transition temperature TC up to 7K. Recently, certain kagome superconductors have been found to exhibit an exotic charge order, which intertwines with superconductivity and persists to a temperature being one order of magnitude higher than TC. In this work, we use scanning tunneling microscopy (STM) to study the charge order in kagome superconductor RbV3Sb5. We observe both a 2x2 chiral charge order and nematic surface superlattices (predominantly 1x4). We find that the 2x2 charge order exhibits intrinsic chirality with magnetic field tunability. Defects can scatter electrons to introduce standing waves, which couple with the charge order to cause extrinsic effects. While the chiral charge order resembles that discovered in KV3Sb5, it further interacts with the nematic surface superlattices that are absent in KV3Sb5 but exist in CsV3Sb5.
Intertwining quantum order and nontrivial topology is at the frontier of condensed matter physics. A charge density wave (CDW) like order with orbital currents has been proposed as a powerful resource for achieving the quantum anomalous Hall effect i n topological materials and for the hidden phase in cuprate high-temperature superconductors. However, the experimental realization of such an order is challenging. Here we use high-resolution scanning tunnelling microscopy (STM) to discover an unconventional charge order in a kagome material KV3Sb5, with both a topological band structure and a superconducting ground state. Through both topography and spectroscopic imaging, we observe a robust 2x2 superlattice. Spectroscopically, an energy gap opens at the Fermi level, across which the 2x2 charge modulation exhibits an intensity reversal in real-space, signaling charge ordering. At impurity-pinning free region, the strength of intrinsic charge modulations further exhibits chiral anisotropy with unusual magnetic field response. Theoretical analysis of our experiments suggests a tantalizing unconventional chiral CDW in the frustrated kagome lattice, which can not only lead to large anomalous Hall effect with orbital magnetism, but also be a precursor of unconventional superconductivity.
Quantum states induced by single-atomic impurities are at the frontier of physics and material science. While such states have been reported in high-temperature superconductors and dilute magnetic semiconductors, they are unexplored in topological ma gnets which can feature spin-orbit tunability. Here we use spin-polarized scanning tunneling microscopy/spectroscopy (STM/S) to study the engineered quantum impurity in a topological magnet Co3Sn2S2. We find that each substituted In impurity introduces a striking localized bound state. Our systematic magnetization-polarized probe reveals that this bound state is spin-down polarized, in lock with a negative orbital magnetization. Moreover, the magnetic bound states of neighboring impurities interact to form quantized orbitals, exhibiting an intriguing spin-orbit splitting, analogous to the splitting of the topological fermion line. Our work collectively demonstrates the strong spin-orbit effect of the single-atomic impurity at the quantum level, suggesting that a nonmagnetic impurity can introduce spin-orbit coupled magnetic resonance in topological magnets.
Exploration of the topological quantum materials with electron correlation is at the frontier of physics, as the strong interaction may give rise to new topological phases and transitions. Here we report that a family of kagome magnets RMn$_6$Sn$_6$ manifest the quantum transport properties analogical to those in the quantum-limit Chern magnet TbMn$_6$Sn$_6$. The topological transport in the family, including quantum oscillations with nontrivial Berry phase and large anomalous Hall effect arising from Berry curvature field, points to the existence of massive Dirac fermions. Our observation demonstrates a close relationship between rare-earth magnetism and topological electron structure, indicating the rare-earth elements can effectively engineer the Chern quantum phase in kagome magnets.
We use scanning tunneling microscopy/spectroscopy (STM/S) to elucidate the atomically resolved electronic structure in strongly correlated topological kagome magnet Mn$_3$Sn. In stark contrast to its broad single-particle electronic structure, we obs erve a pronounced resonance with a Fano line shape at the Fermi level resembling the many-body Kondo resonance. We find that this resonance does not arise from the step edges or atomic impurities, but the intrinsic kagome lattice. Moreover, the resonance is robust against the perturbation of a vector magnetic field, but broadens substantially with increasing temperature, signaling strongly interacting physics. We show that this resonance can be understood as the result of geometrical frustration and strong correlation based on the kagome lattice Hubbard model. Our results point to the emergent many-body resonance behavior in a topological kagome magnet.
The quantum level interplay between geometry, topology, and correlation is at the forefront of fundamental physics. Owing to the unusual lattice geometry and breaking of time-reversal symmetry, kagome magnets are predicted to support intrinsic Chern quantum phases. However, quantum materials hosting ideal spin-orbit coupled kagome lattices with strong out-of-plane magnetization have been lacking. Here we use scanning tunneling microscopy to discover a new topological kagome magnet TbMn6Sn6, which is close to satisfying the above criteria. We visualize its effectively defect-free purely Mn-based ferromagnetic kagome lattice with atomic resolution. Remarkably, its electronic state exhibits distinct Landau quantization upon the application of a magnetic field, and the quantized Landau fan structure features spin-polarized Dirac dispersion with a large Chern gap. We further demonstrate the bulk-boundary correspondence between the Chern gap and topological edge state, as well as the Berry curvature field correspondence of Chern gapped Dirac fermions. Our results point to the realization of a quantum-limit Chern phase in TbMn6Sn6, opening up an avenue for discovering topological quantum phenomena in the RMn6Sn6 (R = rare earth element) family with a variety of magnetic structures. Our visualization of the magnetic bulk-boundary-Berry correspondence covering real and momentum space demonstrates a proof-of-principle method revealing topological magnets.
Quantum states induced by single-atomic-impurities are the current frontier of material and information science. Recently the spin-orbit coupled correlated kagome magnets are emerging as a new class of topological quantum materials, although the effe ct of single-atomic impurities remains unexplored. Here we use state-of-the-art scanning tunneling microscopy/spectroscopy (STM/S) to study the atomic indium impurity in a topological kagome magnet Co3Sn2S2, which is designed to support the spin-orbit quantum state. We find each impurity features a strongly localized bound state. Our systematic magnetization-polarized tunneling probe reveals its spin-down polarized nature with an unusual moment of -5uB, indicative of additional orbital magnetization. As the separation between two impurities progressively shrinks, their respective bound states interact and form quantized molecular orbital states. The molecular orbital of three neighboring impurities further exhibits an intriguing splitting owing to the combination of geometry, magnetism, and spin-orbit coupling, analogous to the splitting of the topological Weyl fermion line12,19. Our work demonstrates the quantum-level interplay between magnetism and spin-orbit coupling at an individual atomic impurity, which provides insights into the emergent impurity behavior in a topological kagome magnet and the potential of spin-orbit quantum impurities for information science.
Superconducting materials exhibiting topological properties are emerging as an exciting platform to realize fundamentally new excitations from topological quantum states of matter. In this work, we explore the possibility of a field-free platform for generating Majorana zero energy excitations by depositing magnetic Fe impurities on the surface of candidate topological superconductors, LiFeAs and PbTaSe$_2$. We use scanning tunneling microscopy to probe localized states induced at the Fe adatoms on the atomic scale and at sub-Kelvin temperatures. We find that each Fe adatom generates a striking zero-energy bound state inside the superconducting gap, which do not split in magnetic fields up to 8T, underlining a nontrivial topological origin. Our findings point to magnetic Fe adatoms evaporated on bulk superconductors with topological surface states as a new platform for exploring Majorana zero modes and quantum information science under field-free conditions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا