ﻻ يوجد ملخص باللغة العربية
Exploration of the topological quantum materials with electron correlation is at the frontier of physics, as the strong interaction may give rise to new topological phases and transitions. Here we report that a family of kagome magnets RMn$_6$Sn$_6$ manifest the quantum transport properties analogical to those in the quantum-limit Chern magnet TbMn$_6$Sn$_6$. The topological transport in the family, including quantum oscillations with nontrivial Berry phase and large anomalous Hall effect arising from Berry curvature field, points to the existence of massive Dirac fermions. Our observation demonstrates a close relationship between rare-earth magnetism and topological electron structure, indicating the rare-earth elements can effectively engineer the Chern quantum phase in kagome magnets.
Kagome magnets are believed to have numerous exotic physical properties due to the possible interplay between lattice geometry, electron correlation and band topology. Here, we report the large anomalous Hall effect in the kagome ferromagnet LiMn$_6$
We report magnetic and electrical properties for single crystals of NdMn$_6$Sn$_6$ and SmMn$_6$Sn$_6$. They crystallize into a structure which has distorted, Mn-based kagome lattices, compared to the pristine kagome lattices in heavy-rare-earth-beari
The synthesis and characterization of vanadium-based kagome metals YV$_6$Sn$_6$ and GdV$_6$Sn$_6$ are presented. X-ray diffraction, magnetization, magnetotransport, and heat capacity measurements reveal an ideal kagome network of V-ions coordinated b
We present magnetotransport data on the ferrimagnet GdMn$_6$Sn$_6$. From the temperature dependent data we are able to extract a large instrinsic contribution to the anomalous Hall effect $sigma_{xz}^{int} sim$ 32 $Omega^{-1}cm^{-1}$ and $sigma_{xy}^
The interplay between time-reversal symmetry (TRS) and band topology plays a crucial role in topological states of quantum matter. In time-reversal-invariant (TRI) systems, the inversion of spin-degenerate bands with opposite parity leads to nontrivi