ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of a quantum limit Chern magnet TbMn6Sn6

124   0   0.0 ( 0 )
 نشر من قبل Jiaxin Yin
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The quantum level interplay between geometry, topology, and correlation is at the forefront of fundamental physics. Owing to the unusual lattice geometry and breaking of time-reversal symmetry, kagome magnets are predicted to support intrinsic Chern quantum phases. However, quantum materials hosting ideal spin-orbit coupled kagome lattices with strong out-of-plane magnetization have been lacking. Here we use scanning tunneling microscopy to discover a new topological kagome magnet TbMn6Sn6, which is close to satisfying the above criteria. We visualize its effectively defect-free purely Mn-based ferromagnetic kagome lattice with atomic resolution. Remarkably, its electronic state exhibits distinct Landau quantization upon the application of a magnetic field, and the quantized Landau fan structure features spin-polarized Dirac dispersion with a large Chern gap. We further demonstrate the bulk-boundary correspondence between the Chern gap and topological edge state, as well as the Berry curvature field correspondence of Chern gapped Dirac fermions. Our results point to the realization of a quantum-limit Chern phase in TbMn6Sn6, opening up an avenue for discovering topological quantum phenomena in the RMn6Sn6 (R = rare earth element) family with a variety of magnetic structures. Our visualization of the magnetic bulk-boundary-Berry correspondence covering real and momentum space demonstrates a proof-of-principle method revealing topological magnets.



قيم البحث

اقرأ أيضاً

Topological matter is known to exhibit unconventional surface states and anomalous transport owing to unusual bulk electronic topology. In this study, we use photoemission spectroscopy and quantum transport to elucidate the topology of the room tempe rature magnet Co$_2$MnGa. We observe sharp bulk Weyl fermion line dispersions indicative of nontrivial topological invariants present in the magnetic phase. On the surface of the magnet, we observe electronic wave functions that take the form of drumheads, enabling us to directly visualize the crucial components of the bulk-boundary topological correspondence. By considering the Berry curvature field associated with the observed topological Weyl fermion lines, we quantitatively account for the giant anomalous Hall response observed in our samples. Our experimental results suggest a rich interplay of strongly correlated electrons and topology in this quantum magnet.
370 - N. Kida , Y. Ikebe , Y. Takahashi 2008
Temperature (5--250 K) and magnetic field (0--70 kOe) variations of the low-energy (1--10 meV) electrodynamics of spin excitations have been investigated for a complete set of light-polarization configurations for a ferroelectric magnet DyMnO$_3$ by using terahertz time-domain spectroscopy. We identify the pronounced absorption continuum (1--8 meV) with a peak feature around 2 meV, which is electric-dipole active only for the light $E$-vector along the a-axis. This absorption band grows in intensity with lowering temperature from the spin-collinear paraelectric phase above the ferroelectric transition, but is independent of the orientation of spiral spin plane ($bc$ or $ab$), as shown on the original $P_{rm s}$ (ferroelectric polarization) $parallel c$ phase as well as the magnetic field induced $P_{rm s}parallel a$ phase. The possible origin of this electric-dipole active band is argued in terms of the large fluctuations of spins and spin-current.
The magnetoelectric (ME) effects are investigated in a cubic compound SrCuTe2O6, in which uniform Cu2+ (S=1/2) spin chains with considerable spin frustration exhibit a concomitant antiferromagnetic transition and dielectric constant peak at TN=5.5 K. Pyroelectric Jp(T) and magnetoelectric current JME(H) measurements in the presence of a bias electric field are used to reveal that SrCuTe2O6 shows clear variations of Jp(T) across TN at constant magnetic fields. Furthermore, isothermal measurements of JME(H) also develop clear peaks at finite magnetic fields, of which traces are consistent with the spin-flop transitions observed in the magnetization studies. As a result, the anomalies observed in Jp(T) and JME(H) curves well match with the field-temperature phase diagram constructed from magnetization and dielectric constant measurements, demonstrating that SrCuTe2O6 is a new magnetoelectric compound with S=1/2 spin chains.
Although ferromagnets are found in all kinds of technological applications, only few substances are known to be intrinsically ferromagnetic at room temperature. In the past twenty years, a plethora of new artificial ferromagnetic materials have been found by introducing defects into non-magnetic host materials. In contrast to the intrinsic ferromagnetic materials, they offer an outstanding degree of material engineering freedom, provided one finds a type of defect to functionalize every possible host material to add magnetism to its intrinsic properties. Still, one controversial question remains: Are these materials really technologically relevant ferromagnets? To answer this question, in this work the emergence of a ferromagnetic phase upon ion irradiation is systematically investigated both theoretically and experimentally. Quantitative predictions are validated against experimental data from the literature of SiC hosts irradiated with high energy Ne ions and own experiments on low energy Ar ion irradiation of TiO$_2$ hosts. In the high energy regime, a bulk magnetic phase emerges, which is limited by host lattice amorphization, whereas at low ion energies an ultrathin magnetic layer forms at the surface and evolves into full magnetic percolation. Lowering the ion energy, the magnetic layer thickness reduces down to a bilayer, where a perpendicular magnetic anisotropy appears due to magnetic surface states.
Magnetic topological phases of quantum matter are an emerging frontier in physics and material science. Along these lines, several kagome magnets have appeared as the most promising platforms. However, the magnetic nature of these materials in the pr esence of topological state remains an unsolved issue. Here, we explore magnetic correlations in the kagome magnet Co_3Sn_2S_2. Using muon spin-rotation, we present evidence for competing magnetic orders in the kagome lattice of this compound. Our results show that while the sample exhibits an out-of-plane ferromagnetic ground state, an in-plane antiferromagnetic state appears at temperatures above 90 K, eventually attaining a volume fraction of 80% around 170 K, before reaching a non-magnetic state. Strikingly, the reduction of the anomalous Hall conductivity above 90 K linearly follows the disappearance of the volume fraction of the ferromagnetic state. We further show that the competition of these magnetic phases is tunable through applying either an external magnetic field or hydrostatic pressure. Our results taken together suggest the thermal and quantum tuning of Berry curvature field via external tuning of magnetic order. Our study shows that Co_3Sn_2S_2 is a rare example where the magnetic competition drives the thermodynamic evolution of the Berry curvature field, thus tuning its topological state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا