ﻻ يوجد ملخص باللغة العربية
Superconductors with kagome lattices have been identified for over 40 years, with a superconducting transition temperature TC up to 7K. Recently, certain kagome superconductors have been found to exhibit an exotic charge order, which intertwines with superconductivity and persists to a temperature being one order of magnitude higher than TC. In this work, we use scanning tunneling microscopy (STM) to study the charge order in kagome superconductor RbV3Sb5. We observe both a 2x2 chiral charge order and nematic surface superlattices (predominantly 1x4). We find that the 2x2 charge order exhibits intrinsic chirality with magnetic field tunability. Defects can scatter electrons to introduce standing waves, which couple with the charge order to cause extrinsic effects. While the chiral charge order resembles that discovered in KV3Sb5, it further interacts with the nematic surface superlattices that are absent in KV3Sb5 but exist in CsV3Sb5.
Kagome superconductors with Tc up to 7K have been discovered over 40 years. Recently, unconventional chiral charge order has been reported in kagome superconductor KV3Sb5, with an ordering temperature of one order of magnitude higher than the TC. How
Intertwining quantum order and nontrivial topology is at the frontier of condensed matter physics. A charge density wave (CDW) like order with orbital currents has been proposed as a powerful resource for achieving the quantum anomalous Hall effect i
The recently discovered family of AV$_3$Sb$_5$ (A: K, Rb Cs) kagome metals possess a unique combination of nontrivial band topology, superconducting ground states, and signatures of electron correlations manifest via competing charge density wave ord
Recently discovered Z2 topological kagome metals AV3Sb5 (A = K, Rb, and Cs) exhibit charge density wave (CDW) phases and novel superconducting paring states, providing a versatile platform for studying the interplay between electron correlation and q
The electronic band structure of the 2D kagome net hosts two different types of van Hove singularities (vHs) arising from an intrinsic electron-hole asymmetry. The distinct sublattice flavors (pure and mixed, p-type and m-type) and pairing instabilit