ترغب بنشر مسار تعليمي؟ اضغط هنا

Establishing the nature of the ground state of the Heisenberg antiferromagnet (HAFM) on the kagome lattice is well known to be a prohibitively difficult problem for classical computers. Here, we give a detailed proposal for a Variational Quantum Eige nsolver (VQE) with the aim of solving this physical problem on a quantum computer. At the same time, this VQE constitutes an explicit proposal for showing a useful quantum advantage on Noisy Intermediate-Scale Quantum (NISQ) devices because of its natural hardware compatibility. We classically emulate a noiseless quantum computer with the connectivity of a 2D square lattice and show how the ground state energy of a 20-site patch of the kagome HAFM, as found by the VQE, approaches the true ground state energy exponentially as a function of the circuit depth. Besides indicating the potential of quantum computers to solve for the ground state of the kagome HAFM, the classical emulation of the VQE serves as a benchmark for real quantum devices on the way towards a useful quantum advantage.
One of the hallmarks of topological insulators is the correspondence between the value of its bulk topological invariant and the number of topologically protected edge modes observed in a finite-sized sample. This bulk-boundary correspondence has bee n well-tested for strong topological invariants, and forms the basis for all proposed technological applications of topology. Here, we report that a group of weak topological invariants, which depend only on the symmetries of the atomic lattice, also induces a particular type of bulk-boundary correspondence. It predicts the presence or absence of states localised at the interface between two inversion-symmetric band insulators with trivial values for their strong invariants, based on the space group representation of the bands on either side of the junction. We show that this corresponds with symmetry-based classifications of topological materials. The interface modes are protected by the combination of band topology and symmetry of the interface, and may be used for topological transport and signal manipulation in heterojunction-based devices.
Antiferromagnets and ferromagnets are archetypes of the two distinct (type-A and type-B) ways of spontaneously breaking a continuous symmetry. Although type-B Nambu--Goldstone modes arise in various systems, the ferromagnet was considered pathologica l due to the stability and symmetry-breaking nature of its exact ground state. However, here we show that symmetry-breaking in ferrimagnets closely resembles the ferromagnet. In particular, there is an extensive ground state degeneracy, there is no Anderson tower of states, and the maximally polarized ground state is thermodynamically stable. Our results are derived analytically for the Lieb--Mattis ferrimagnet and numerically for the Heisenberg ferrimagnet. We argue that these properties are generic for type-B symmetry-broken systems, where the order parameter operator is a symmetry generator.
We present a method for efficiently enumerating all allowed, topologically distinct, electronic band structures within a given crystal structure. The algorithm applies to crystals with broken time-reversal, particle-hole, and chiral symmetries in any dimension. The presented results match the mathematical structure underlying the topological classification of these crystals in terms of K-theory, and therefore elucidate this abstract mathematical framework from a simple combinatorial perspective. Using a straightforward counting procedure, we classify the allowed topological phases in any possible two-dimensional crystal in class A. We also show how the same procedure can be used to classify the allowed phases for any three-dimensional space group. Employing these classifications, we study transitions between topological phases within class A that are driven by band
We investigate the dispersion of the charge carrier plasmon in the three prototypical charge-density wave bearing transition-metal dichalcogenides 2H-TaSe2, 2H-TaS2 and 2H-NbSe2 employing electron energy-loss spectroscopy. For all three compounds the plasmon dispersion is found to be negative for small momentum transfers. This is in contrast to the generic behavior observed in simple metals as well as the related system 2H-NbS2, which does not exhibit charge order. We present a semiclassical Ginzburg-Landau model which accounts for these observations, and argue that the vicinity to a charge ordered state is thus reflected in the properties of the collective excitations.
According to the hypothesis of Penrose and Diosi, quantum state reduction is a manifestation of the incompatibilty of general relativity and the unitary time evolution of quantum physics. Dimensional analysis suggests that Schrodinger cat type states should collapse on measurable time scales when masses and lengths of the order of bacterial scales are involved. We analyze this hypothesis in the context of modern developments in condensed matter and cold atoms physics, aimed at realizing macroscopic quantum states. We first consider micromechanical quantum states, analyzing the capacity of an atomic force microscopy based single spin detector to measure the gravitational state reduction, but we conclude that it seems impossible to suppress environmental decoherence to the required degree. We subsequently discuss split cold atom condensates to find out that these are at present lacking the required mass scale by many orders of magnitude. We then extent Penroses analysis to superpositions of mass current carrying states, and we apply this to the flux quantum bits realized in superconducting circuits. We find that the flux qubits approach the scale where gravitational state reduction should become measurable, but bridging the few remaining orders of magnitude appears to be very difficult with present day technology.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا