ﻻ يوجد ملخص باللغة العربية
Establishing the nature of the ground state of the Heisenberg antiferromagnet (HAFM) on the kagome lattice is well known to be a prohibitively difficult problem for classical computers. Here, we give a detailed proposal for a Variational Quantum Eigensolver (VQE) with the aim of solving this physical problem on a quantum computer. At the same time, this VQE constitutes an explicit proposal for showing a useful quantum advantage on Noisy Intermediate-Scale Quantum (NISQ) devices because of its natural hardware compatibility. We classically emulate a noiseless quantum computer with the connectivity of a 2D square lattice and show how the ground state energy of a 20-site patch of the kagome HAFM, as found by the VQE, approaches the true ground state energy exponentially as a function of the circuit depth. Besides indicating the potential of quantum computers to solve for the ground state of the kagome HAFM, the classical emulation of the VQE serves as a benchmark for real quantum devices on the way towards a useful quantum advantage.
The variational quantum eigensolver (VQE) is a promising algorithm to compute eigenstates and eigenenergies of a given quantum system that can be performed on a near-term quantum computer. Obtaining eigenstates and eigenenergies in a specific symmetr
The variational quantum eigensolver (VQE) is one of the most representative quantum algorithms in the noisy intermediate-size quantum (NISQ) era, and is generally speculated to deliver one of the first quantum advantages for the ground-state simulati
Recent practical approaches for the use of current generation noisy quantum devices in the simulation of quantum many-body problems have been dominated by the use of a variational quantum eigensolver (VQE). These coupled quantum-classical algorithms
The variational quantum eigensolver is a hybrid algorithm composed of quantum state driving and classical parameter optimization, for finding the ground state of a given Hamiltonian. The natural gradient method is an optimization method taking into a
Development of resource-friendly quantum algorithms remains highly desirable for noisy intermediate-scale quantum computing. Based on the variational quantum eigensolver (VQE) with unitary coupled cluster ansatz, we demonstrate that partitioning of t