ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards an Experimental Test of Gravity-induced Quantum State Reduction

34   0   0.0 ( 0 )
 نشر من قبل Jasper van Wezel
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

According to the hypothesis of Penrose and Diosi, quantum state reduction is a manifestation of the incompatibilty of general relativity and the unitary time evolution of quantum physics. Dimensional analysis suggests that Schrodinger cat type states should collapse on measurable time scales when masses and lengths of the order of bacterial scales are involved. We analyze this hypothesis in the context of modern developments in condensed matter and cold atoms physics, aimed at realizing macroscopic quantum states. We first consider micromechanical quantum states, analyzing the capacity of an atomic force microscopy based single spin detector to measure the gravitational state reduction, but we conclude that it seems impossible to suppress environmental decoherence to the required degree. We subsequently discuss split cold atom condensates to find out that these are at present lacking the required mass scale by many orders of magnitude. We then extent Penroses analysis to superpositions of mass current carrying states, and we apply this to the flux quantum bits realized in superconducting circuits. We find that the flux qubits approach the scale where gravitational state reduction should become measurable, but bridging the few remaining orders of magnitude appears to be very difficult with present day technology.

قيم البحث

اقرأ أيضاً

Bells theorem states that no local hidden variable model is compatible with quantum mechanics. Surprisingly, even if we release the locality constraint, certain nonlocal hidden variable models, such as the one proposed by Leggett, may still be at var iance with the predictions of quantum physics. Here, we report an experimental test of Leggetts nonlocal model with solid-state spins in a diamond nitrogen-vacancy center. We entangle an electron spin with a surrounding weakly coupled $^{13}C$ nuclear spin and observe that the entangled states violate Leggett-type inequalities by more than four and seven standard deviations for six and eight measurement settings, respectively. Our experimental results are in full agreement with quantum predictions and violate Leggetts nonlocal hidden variable inequality with a high level of confidence.
263 - C. Zu , Y.-X. Wang , D.-L. Deng 2012
We report the first state-independent experimental test of quantum contextuality on a single photonic qutrit (three-dimensional system), based on a recent theoretical proposal [Yu and Oh, Phys. Rev. Lett. 108, 030402 (2012)]. Our experiment spotlight s quantum contextuality in its most basic form, in a way that is independent of either the state or the tensor product structure of the system.
We report macroscopic magnetic measurements carried out in order to detect and characterize field-induced quantum entanglement in low dimensional spin systems. We analyze the pyroborate MgMnB_2O_5 and the and the warwickite MgTiOBO_3, systems with sp in 5/2 and 1/2 respectively. By using the magnetic susceptibility as an entanglement witness we are able to quantify entanglement as a function of temperature and magnetic field. In addition, we experimentally distinguish for the first time a random singlet phase from a Griffiths phase. This analysis opens the possibility of a more detailed characterization of low dimensional materials.
Exceptional points (EPs) associated with a square-root singularity have been found in many non-Hermitian systems. In most of the studies, the EPs found are isotropic meaning that the same singular behavior is obtained independent of the direction fro m which they are approached in the parameter space. In this work, we demonstrate both theoretically and experimentally the existence of an anisotropic EP in an acoustic system that shows different singular behaviors when the anisotropic EP is approached from different directions in the parameter space. Such an anisotropic EP arises from the coalescence of two square-root EPs having the same chirality.
Many superconducting qubits are highly sensitive to dielectric loss, making the fabrication of coherent quantum circuits challenging. To elucidate this issue, we characterize the interfaces and surfaces of superconducting coplanar waveguide resonator s and study the associated microwave loss. We show that contamination induced by traditional qubit lift-off processing is particularly detrimental to quality factors without proper substrate cleaning, while roughness plays at most a small role. Aggressive surface treatment is shown to damage the crystalline substrate and degrade resonator quality. We also introduce methods to characterize and remove ultra-thin resist residue, providing a way to quantify and minimize remnant sources of loss on device surfaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا