ترغب بنشر مسار تعليمي؟ اضغط هنا

Recently, new thermodynamic inequalities have been obtained, which set bounds on the quadratic fluctuations of intensive observables of statistical mechanical systems in terms of the Bogoliubov - Duhamel inner product and some thermal average values. It was shown that several well-known inequalities in equilibrium statistical mechanics emerge as special cases of these results. On the basis of the spectral representation, lower and upper bounds on the one-sided fidelity susceptibility were derived in analogous terms. Here, these results are reviewed and presented in a unified manner. In addition, the spectral representation of the symmetric two-sided fidelity susceptibility is derived, and it is shown to coincide with the one-sided case. Therefore, both definitions imply the same lower and upper bounds on the fidelity susceptibility.
We present some aspects of the fidelity approach to phase transitions based on lower and upper bounds on the fidelity susceptibility that are expressed in terms of thermodynamic quantities. Both commutative and non commutative cases are considered. I n the commutative case, in addition, a relation between the fidelity and the nonequilibrium work done on the system in a process from an equilibrium initial state to an equilibrium final state has been obtained by using the Jarzynski equality.
We derive upper and lower bounds on the fidelity susceptibility in terms of macroscopic thermodynamical quantities, like susceptibilities and thermal average values. The quality of the bounds is checked by the exact expressions for a single spin in a n external magnetic field. Their usefulness is illustrated by two examples of many-particle models which are exactly solved in the thermodynamic limit: the Dicke superradiance model and the single impurity Kondo model. It is shown that as far as divergent behavior is considered, the fidelity susceptibility and the thermodynamic susceptibility are equivalent for a large class of models exhibiting critical behavior.
Infinite sets of inequalities which generalize all the known inequalities that can be used in the majorization step of the Approximating Hamiltonian method are derived. They provide upper bounds on the difference between the quadratic fluctuations of intensive observables of a $N$-particle system and the corresponding Bogoliubov-Duhamel inner product. The novel feature is that, under sufficiently mild conditions, the upper bounds have the same form and order of magnitude with respect to $N$ for all the quantities derived by a finite number of commutations of an original intensive observable with the Hamiltonian. The results are illustrated on two types of exactly solvable model systems: one with bounded separable attraction and the other containing interaction of a boson field with matter.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا