ترغب بنشر مسار تعليمي؟ اضغط هنا

New Inequalities in Equilibrium Statistical Mechanics

366   0   0.0 ( 0 )
 نشر من قبل Jordan Brankov
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, new thermodynamic inequalities have been obtained, which set bounds on the quadratic fluctuations of intensive observables of statistical mechanical systems in terms of the Bogoliubov - Duhamel inner product and some thermal average values. It was shown that several well-known inequalities in equilibrium statistical mechanics emerge as special cases of these results. On the basis of the spectral representation, lower and upper bounds on the one-sided fidelity susceptibility were derived in analogous terms. Here, these results are reviewed and presented in a unified manner. In addition, the spectral representation of the symmetric two-sided fidelity susceptibility is derived, and it is shown to coincide with the one-sided case. Therefore, both definitions imply the same lower and upper bounds on the fidelity susceptibility.



قيم البحث

اقرأ أيضاً

A framework for statistical-mechanical analysis of quantum Hamiltonians is introduced. The approach is based upon a gradient flow equation in the space of Hamiltonians such that the eigenvectors of the initial Hamiltonian evolve toward those of the r eference Hamiltonian. The nonlinear double-bracket equation governing the flow is such that the eigenvalues of the initial Hamiltonian remain unperturbed. The space of Hamiltonians is foliated by compact invariant subspaces, which permits the construction of statistical distributions over the Hamiltonians. In two dimensions, an explicit dynamical model is introduced, wherein the density function on the space of Hamiltonians approaches an equilibrium state characterised by the canonical ensemble. This is used to compute quenched and annealed averages of quantum observables.
The transitional and well-developed regimes of turbulent shear flows exhibit a variety of remarkable scaling laws that are only now beginning to be systematically studied and understood. In the first part of this article, we summarize recent progress in understanding the friction factor of turbulent flows in rough pipes and quasi-two-dimensional soap films, showing how the data obey a two-parameter scaling law known as roughness-induced criticality, and exhibit power-law scaling of friction factor with Reynolds number that depends on the precise form of the nature of the turbulent cascade. These results hint at a non-equilibrium fluctuation-dissipation relation that applies to turbulent flows. The second part of this article concerns the lifetime statistics in smooth pipes around the transition, showing how the remarkable super-exponential scaling with Reynolds number reflects deep connections between large deviation theory, extreme value statistics, directed percolation and the onset of coexistence in predator-prey ecosystems. Both these phenomena reflect the way in which turbulence can be fruitfully approached as a problem in non-equilibrium statistical mechanics.
In this work the theoretical basis for the famous formula of Macleod, relating the surface tension of a liquid in equilibrium with its own vapor to the one-particle densities in the two phases of the system, is derived. Using the statistical- mechani cal definition of the surface tension, it is proved that this property is, at the first approximation, given by the Macleod formula.
74 - Fabio Anza 2018
The project concerns the interplay among quantum mechanics, statistical mechanics and thermodynamics, in isolated quantum systems. The underlying goal is to improve our understanding of the concept of thermal equilibrium in quantum systems. First, I investigated the role played by observables and measurements in the emergence of thermal behaviour. This led to a new notion of thermal equilibrium which is specific for a given observable, rather than for the whole state of the system. The equilibrium picture that emerges is a generalization of statistical mechanics in which we are not interested in the state of the system but only in the outcome of the measurement process. I investigated how this picture relates to one of the most promising approaches for the emergence of thermal behaviour in isolated quantum systems: the Eigenstate Thermalization Hypothesis. Then, I applied the results to study some equilibrium properties of many-body localised systems. Despite the localization phenomenon, which prevents thermalization of subsystems, I was able to show that we can still use the predictions of statistical mechanics to describe the equilibrium of some observables. Moreover, the intuition developed in the process led me to propose an experimentally accessible way to unravel the interacting nature of many-body localised systems. Second, I exploited the Concentration of Measure phenomenon to study the macroscopic properties of the basis states of Loop Quantum Gravity. These techniques were previously used to explain why the thermal behaviour in quantum systems is such an ubiquitous phenomenon, at the macroscopic scale. I focused on the local properties, their thermodynamic behaviour and interplay with the semiclassical limit. This was motivated by the necessity to understand, from a quantum gravity perspective, how and why a classical horizon exhibits thermal properties.
82 - Fabio Anza 2018
The unitary dynamics of isolated quantum systems does not allow a pure state to thermalize. Because of that, if an isolated quantum system equilibrates, it will do so to the predictions of the so-called diagonal ensemble $rho_{DE}$. Building on the i ntuition provided by Jaynes maximum entropy principle, in this paper we present a novel technique to generate progressively better approximations to $rho_{DE}$. As an example, we write down a hierarchical set of ensembles which can be used to describe the equilibrium physics of small isolated quantum systems, going beyond the thermal ansatz of Gibbs ensembles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا