ﻻ يوجد ملخص باللغة العربية
Infinite sets of inequalities which generalize all the known inequalities that can be used in the majorization step of the Approximating Hamiltonian method are derived. They provide upper bounds on the difference between the quadratic fluctuations of intensive observables of a $N$-particle system and the corresponding Bogoliubov-Duhamel inner product. The novel feature is that, under sufficiently mild conditions, the upper bounds have the same form and order of magnitude with respect to $N$ for all the quantities derived by a finite number of commutations of an original intensive observable with the Hamiltonian. The results are illustrated on two types of exactly solvable model systems: one with bounded separable attraction and the other containing interaction of a boson field with matter.
We present inequalities related to generalized matrix function for positive semidefinite block matrices. We introduce partial generalized matrix functions corresponding to partial traces and then provide an unified extension of the recent inequalitie
We have carried out an analysis of singularities in Kohn variational calculations for low energy e^{+}-H_{2} elastic scattering. Provided that a sufficiently accurate trial wavefunction is used, we argue that our implementation of the Kohn variationa
Pauli spin matrices, Pauli group, commutators, anti-commutators and the Kronecker product are studied. Applications to eigenvalue problems, exponential functions of such matrices, spin Hamilton operators, mutually unbiased bases, Fermi operators and Bose operators are provided.
This work continues the study of the thermal Hamiltonian, initially proposed by J. M. Luttinger in 1964 as a model for the conduction of thermal currents in solids. The previous work [DL] contains a complete study of the free model in one spatial dim
Hamiltonian operators are used in the theory of integrable partial differential equations to prove the existence of infinite sequences of commuting symmetries or integrals. In this paper it is illustrated the new Reduce package cde for computations o