ترغب بنشر مسار تعليمي؟ اضغط هنا

Collider experiments often exploit information about the quantum numbers of final state hadrons to maximize their sensitivity, with applications ranging from the use of tracking information (electric charge) for precision jet substructure measurement s, to flavor tagging for nucleon structure studies. For such measurements perturbative calculations in terms of quarks and gluons are insufficient, and non-perturbative track functions describing the energy fraction of a quark or gluon converted into a subset of hadrons (e.g. charged hadrons), must be incorporated. Unlike fragmentation functions, track functions describe correlations between hadrons, and therefore satisfy complicated non-linear evolution equations whose structure has so far eluded calculation beyond the leading order. In this Letter we develop an understanding of track functions, and their interplay with energy flow observables, beyond the leading order, allowing them to be used in state-of-the-art perturbative calculations for the first time. We identify a shift symmetry in the evolution of their moments that fixes their structure, and we explicitly compute the evolution of the first three moments at next-to-leading order, allowing for the description of up to three-point energy correlations. We then calculate the two-point energy correlator on charged particles at $O(alpha_s^2)$, illustrating explicitly that infrared singularities in perturbation theory are absorbed by moments of the track functions, and also highlighting how these moments seamlessly interplay with modern techniques for perturbative calculations. Our results extend the boundaries of traditional perturbative QCD, enabling precision perturbative predictions for energy flow observables sensitive to the quantum numbers of hadronic states.
We study the transverse spin structure of the squeezed limit of the three-point energy correlator, $langle mathcal{E}(vec n_1) mathcal{E}(vec n_2) mathcal{E}(vec n_3) rangle$. To describe its all orders perturbative behavior, we develop the light-ray operator product expansion (OPE) in QCD. At leading twist the iterated OPE of $mathcal{E}(vec n_i)$ operators closes onto light-ray operators $mathbb{O}^{[J]}(vec n)$ with spin $J$, and transverse spin $j=0,2$. We compute the $mathcal{E}(vec n_1) mathcal{E}(vec n_2)$, $mathcal{E}(vec n_1) mathbb{O}^{[J]}(vec n_2) $ and $mathbb{O}^{[J_1]}(vec n_1) mathbb{O}^{[J_2]}(vec n_2) $ OPEs as analytic functions of $J$, which allows for the description of arbitrary squeezed limits of $N$-point correlators in QCD. We use these results with $J=3$ to reproduce the perturbative expansion in the squeezed limit of the three-point correlator, as well as to resum the leading twist singular structure for both quark and gluon jets, including transverse spin contributions, as required for phenomenological applications. Finally, we briefly comment on the transverse spin structure at higher twists, and show that to all orders in the twist expansion the highest transverse spin contributions are universal between quark and gluon jets, and are descendants of the leading twist transverse spin-2 operator, allowing their resummation into a simple two-dimensional Euclidean conformal block. Due to the general applicability of our results to arbitrary correlation functions of energy flow operators, we anticipate that they can be widely applied to improving our understanding of jet substructure at the LHC.
Collimated sprays of hadrons, called jets, are an emergent phenomenon of Quantum Chromodynamics (QCD) at collider experiments, whose detailed internal structure encodes valuable information about the interactions of high energy quarks and gluons, and their confinement into color-neutral hadrons. The flow of energy within jets is characterized by correlation functions of energy flow operators, with the three-point correlator, being the first correlator with non-trivial shape dependence, playing a special role in unravelling the dynamics of QCD. In this Letter we initiate a study of the three-point energy correlator to all orders in the strong coupling constant, in the limit where two of the detectors are squeezed together. We show that by rotating the two squeezed detectors with respect to the third by an angle $phi$, a $cos (2phi)$ dependence arising from the quantum interference between intermediate virtual gluons with $+/-$ helicity is imprinted on the detector. This can be regarded as a double slit experiment performed with jet substructure, and it provides a direct probe of the ultimately quantum nature of the substructure of jets, and of transverse spin physics in QCD. To facilitate our all-orders analysis, we adopt the Operator Product Expansion (OPE) for light-ray operators in conformal field theory and develop it in QCD. Our application of the light-ray OPE in real world QCD establishes it as a powerful theoretical tool with broad applications for the study of jet substructure.
We introduce an infinite set of jet substructure observables, derived as projections of $N$-point energy correlators, that are both convenient for experimental studies and maintain remarkable analytic properties derived from their representations in terms of a finite number of light ray operators. We show that these observables can be computed using tracking or charge information with a simple reweighting by integer moments of non-perturbative track or fragmentation functions. Our results for the projected $N$-point correlators are analytic functions of $N$, allowing us to derive resummed results to next-to-leading logarithmic accuracy for all $N$. We analytically continue our results to non-integer values of $N$ and define a corresponding analytic continuation of the observable, which we term a $ u$-correlator, that can be measured on jets of hadrons at the LHC. This enables observables that probe the leading twist collinear dynamics of jets to be placed into a single analytic family, which we hope will lead to new insights into jet substructure.
Energy Correlators measure the energy deposited in multiple detectors as a function of the angles between the detectors. In this paper, we analytically compute the three particle correlator in the collinear limit in QCD for quark and gluon jets, and also in $mathcal{N}=4$ super Yang-Mills theory. We find an intriguing duality between the integrals for the energy correlators and infrared finite Feynman parameter integrals, which maps the angles of the correlators to dual momentum variables. In $mathcal{N}=4$, we use this duality to express our result as a rational sum of simple Feynman integrals (triangles and boxes). In QCD our result is expressed as a sum of the same transcendental functions, but with more complicated rational functions of cross ratio variables as coefficients. Our results represent the first analytic calculation of a three-prong jet substructure observable of phenomenological relevance for the LHC, revealing unexplored simplicity in the energy flow of QCD jets. They also provide valuable data for improving the understanding of the light-ray operator product expansion.
We derive and solve renormalization group equations that allow for the resummation of subleading power rapidity logarithms. Our equations involve operator mixing into a new class of operators, which we term the rapidity identity operators, that will generically appear at subleading power in problems involving both rapidity and virtuality scales. To illustrate our formalism, we analytically solve these equations to resum the power suppressed logarithms appearing in the back-to-back (double light cone) limit of the Energy-Energy Correlator (EEC) in $mathcal{N}$=4 super-Yang-Mills. These logarithms can also be extracted to $mathcal{O}(alpha_s^3)$ from a recent perturbative calculation, and we find perfect agreement to this order. Instead of the standard Sudakov exponential, our resummed result for the subleading power logarithms is expressed in terms of Dawsons integral, with an argument related to the cusp anomalous dimension. We call this functional form Dawsons Sudakov. Our formalism is widely applicable for the resummation of subleading power rapidity logarithms in other more phenomenologically relevant observables, such as the EEC in QCD, the $p_T$ spectrum for color singlet boson production at hadron colliders, and the resummation of power suppressed logarithms in the Regge limit.
There has been recent interest in understanding the all loop structure of the subleading power soft and collinear limits, with the goal of achieving a systematic resummation of subleading power infrared logarithms. Most of this work has focused on su bleading power corrections to soft gluon emission, whose form is strongly constrained by symmetries. In this paper we initiate a study of the all loop structure of soft fermion emission. In $mathcal{N}=1$ QCD we perform an operator based factorization and resummation of the associated infrared logarithms, and prove that they exponentiate into a Sudakov due to their relation to soft gluon emission. We verify this result through explicit calculation to $mathcal{O}(alpha_s^3)$. We show that in QCD, this simple Sudakov exponentiation is violated by endpoint contributions proportional to $(C_A-C_F)^n$ which contribute at leading logarithmic order. Combining our $mathcal{N}=1$ result and our calculation of the endpoint contributions to $mathcal{O}(alpha_s^3)$, we conjecture a result for the soft quark Sudakov in QCD, a new all orders function first appearing at subleading power, and give evidence for its universality. Our result, which is expressed in terms of combinations of cusp anomalous dimensions in different color representations, takes an intriguingly simple form and also exhibits interesting similarities to results for large-x logarithms in the off diagonal splitting functions.
The study of amplitudes and cross sections in the soft and collinear limits allows for an understanding of their all orders behavior, and the identification of universal structures. At leading power soft emissions are eikonal, and described by Wilson lines. Beyond leading power the eikonal approximation breaks down, soft fermions must be added, and soft radiation resolves the nature of the energetic partons from which they were emitted. For both subleading power soft gluon and quark emissions, we use the soft collinear effective theory (SCET) to derive an all orders gauge invariant bare factorization, at both amplitude and cross section level. This yields universal multilocal matrix elements, which we refer to as radiative functions. These appear from subleading power Lagrangians inserted along the lightcone which dress the leading power Wilson lines. The use of SCET enables us to determine the complete set of radiative functions that appear to $mathcal{O}(lambda^2)$ in the power expansion, to all orders in $alpha_s$. For the particular case of event shape observables in $e^+e^-to$ dijets we derive how the radiative functions contribute to the factorized cross section to $mathcal{O}(lambda^2)$.
171 - Lance J. Dixon , Ian Moult , 2019
The energy-energy-correlator (EEC) observable in $e^+e^-$ annihilation measures the energy deposited in two detectors as a function of the angle between the detectors. The collinear limit, where the angle between the two detectors approaches zero, is of particular interest for describing the substructure of jets produced at hadron colliders as well as in $e^+e^-$ annihilation. We derive a factorization formula for the leading power asymptotic behavior in the collinear limit of a generic quantum field theory, which allows for the resummation of logarithmically enhanced terms to all orders by renormalization group evolution. The relevant anomalous dimensions are expressed in terms of the timelike data of the theory, in particular the moments of the timelike splitting functions, which are known to high perturbative orders. We relate the small angle and back-to-back limits to each other via the total cross section and an integral over intermediate angles. This relation provides us with the initial conditions for quark and gluon jet functions at order $alpha_s^2$. In QCD and in $mathcal{N}=1$ super-Yang-Mills theory, we then perform the resummation to next-to-next-to-leading logarithm, improving previous calculations by two perturbative orders. We highlight the important role played by the non-vanishing $beta$ function in these theories, which while subdominant for Higgs decays to gluons, dominates the behavior of the EEC in the collinear limit for $e^+e^-$ annihilation, and in $mathcal{N}=1$ super-Yang-Mills theory. In conformally invariant $mathcal{N}=4$ super-Yang-Mills theory, reciprocity between timelike and spacelike evolution can be used to express our factorization formula as a power law with exponent equal to the spacelike twist-two spin-three anomalous dimensions, thus providing a connection between timelike and spacelike approaches.
119 - AnJie Gao , Hai Tao Li , Ian Moult 2019
We present an operator based factorization formula for the transverse energy-energy correlator (TEEC) hadron collider event shape in the back-to-back (dijet) limit. This factorization formula exhibits a remarkably symmetric form, being a projection o nto a scattering plane of a more standard transverse momentum dependent factorization. Soft radiation is incorporated through a dijet soft function, which can be elegantly obtained to next-to-next-to-leading order (NNLO) due to the symmetries of the problem. We present numerical results for the TEEC resummed to next-to-next-to-leading logarithm (NNLL) matched to fixed order at the LHC. Our results constitute the first NNLL resummation for a dijet event shape observable at a hadron collider, and the first analytic result for a hadron collider dijet soft function at NNLO. We anticipate that the theoretical simplicity of the TEEC observable will make it indispensable for precision studies of QCD at the LHC, and as a playground for theoretical studies of factorization and its violation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا