ﻻ يوجد ملخص باللغة العربية
The study of amplitudes and cross sections in the soft and collinear limits allows for an understanding of their all orders behavior, and the identification of universal structures. At leading power soft emissions are eikonal, and described by Wilson lines. Beyond leading power the eikonal approximation breaks down, soft fermions must be added, and soft radiation resolves the nature of the energetic partons from which they were emitted. For both subleading power soft gluon and quark emissions, we use the soft collinear effective theory (SCET) to derive an all orders gauge invariant bare factorization, at both amplitude and cross section level. This yields universal multilocal matrix elements, which we refer to as radiative functions. These appear from subleading power Lagrangians inserted along the lightcone which dress the leading power Wilson lines. The use of SCET enables us to determine the complete set of radiative functions that appear to $mathcal{O}(lambda^2)$ in the power expansion, to all orders in $alpha_s$. For the particular case of event shape observables in $e^+e^-to$ dijets we derive how the radiative functions contribute to the factorized cross section to $mathcal{O}(lambda^2)$.
A number of important observables exhibit logarithms in their perturbative description that are induced by emissions at widely separated rapidities. These include transverse-momentum ($q_T$) logarithms, logarithms involving heavy-quark or electroweak
We revisit QCD calculations of radiative heavy meson decay form factors by including the subleading power corrections from the twist-two photon distribution amplitude at next-to-leading-order in $alpha_s$ with the method of the light-cone sum rules (
We reconsider the QCD predictions for the radiative decay $Bto gamma ell u_ell$ with an energetic photon in the final state by taking into account the $1/E_gamma, 1/m_b$ power-suppressed hard-collinear and soft corrections from higher-twist $B$-meso
Starting from the first renormalized factorization theorem for a process described at subleading power in soft-collinear effective theory, we discuss the resummation of Sudakov logarithms for such processes in renormalization-group improved perturbat
$N$-jettiness subtractions provide a general approach for performing fully-differential next-to-next-to-leading order (NNLO) calculations. Since they are based on the physical resolution variable $N$-jettiness, $mathcal{T}_N$, subleading power correc