ﻻ يوجد ملخص باللغة العربية
We derive and solve renormalization group equations that allow for the resummation of subleading power rapidity logarithms. Our equations involve operator mixing into a new class of operators, which we term the rapidity identity operators, that will generically appear at subleading power in problems involving both rapidity and virtuality scales. To illustrate our formalism, we analytically solve these equations to resum the power suppressed logarithms appearing in the back-to-back (double light cone) limit of the Energy-Energy Correlator (EEC) in $mathcal{N}$=4 super-Yang-Mills. These logarithms can also be extracted to $mathcal{O}(alpha_s^3)$ from a recent perturbative calculation, and we find perfect agreement to this order. Instead of the standard Sudakov exponential, our resummed result for the subleading power logarithms is expressed in terms of Dawsons integral, with an argument related to the cusp anomalous dimension. We call this functional form Dawsons Sudakov. Our formalism is widely applicable for the resummation of subleading power rapidity logarithms in other more phenomenologically relevant observables, such as the EEC in QCD, the $p_T$ spectrum for color singlet boson production at hadron colliders, and the resummation of power suppressed logarithms in the Regge limit.
We present a novel expression for an integrated correlation function of four superconformal primaries in $SU(N)$ $mathcal{N}=4$ SYM. This integrated correlator, which is based on supersymmetric localisation, has been the subject of several recent dev
An integrated correlator of four superconformal stress-tensor primaries of $mathcal{N}=4$ supersymmetric $SU(N)$ Yang-Mills theory (SYM), originally obtained by localisation, is re-expressed as a two-dimensional lattice sum that is manifestly invaria
We compute O(g) NLO corrections to the transverse scattering kernel and transverse momentum broadening coefficient $hat{q}$ of weakly-coupled $mathcal{N}=4$ SYM. Based on this, we also compute NLO correction to the collinear splitting rates. For $hat
A number of important observables exhibit logarithms in their perturbative description that are induced by emissions at widely separated rapidities. These include transverse-momentum ($q_T$) logarithms, logarithms involving heavy-quark or electroweak
Jet cross sections at high-energy colliders exhibit intricate patterns of logarithmically enhanced higher-order corrections. In particular, so-called non-global logarithms emerge from soft radiation emitted off energetic partons inside jets. While th