ﻻ يوجد ملخص باللغة العربية
Energy Correlators measure the energy deposited in multiple detectors as a function of the angles between the detectors. In this paper, we analytically compute the three particle correlator in the collinear limit in QCD for quark and gluon jets, and also in $mathcal{N}=4$ super Yang-Mills theory. We find an intriguing duality between the integrals for the energy correlators and infrared finite Feynman parameter integrals, which maps the angles of the correlators to dual momentum variables. In $mathcal{N}=4$, we use this duality to express our result as a rational sum of simple Feynman integrals (triangles and boxes). In QCD our result is expressed as a sum of the same transcendental functions, but with more complicated rational functions of cross ratio variables as coefficients. Our results represent the first analytic calculation of a three-prong jet substructure observable of phenomenological relevance for the LHC, revealing unexplored simplicity in the energy flow of QCD jets. They also provide valuable data for improving the understanding of the light-ray operator product expansion.
We introduce an infinite set of jet substructure observables, derived as projections of $N$-point energy correlators, that are both convenient for experimental studies and maintain remarkable analytic properties derived from their representations in
The energy-energy-correlator (EEC) observable in $e^+e^-$ annihilation measures the energy deposited in two detectors as a function of the angle between the detectors. The collinear limit, where the angle between the two detectors approaches zero, is
We present the analytic formula for the Energy-Energy Correlation (EEC) in electron-positron annihilation computed in perturbative QCD to next-to-next-to-next-to-leading order (N$^3$LO) in the back-to-back limit. In particular, we consider the EEC ar
We derive an operator based factorization theorem for the energy-energy correlation (EEC) observable in the back-to-back region, allowing the cross section to be written as a convolution of hard, jet and soft functions. We prove the equivalence of th
We discuss some aspects of the relation between dualities and gauge symmetries. Both of these ideas are of course multi-faceted, and we confine ourselves to making two points. Both points are about dualities in string theory, and both have the flavou