ترغب بنشر مسار تعليمي؟ اضغط هنا

236 - Hyosun Kim 2014
IRC+10216 is the nearest carbon star with a very high mass-loss rate. The existence of a binary companion has been hinted by indirect observational evidence, such as the bipolar morphology of its nebula and a spiral-like pattern in its circumstellar material; however, to date, no companion has been identified. We have examined archival Hubble Space Telescope images of IRC+10216, and find that the images taken in 2011 exhibit dramatic changes in its innermost region from those taken at earlier epochs. The scattered light is more spread out in 2011. After proper motion correction, the brightest peak in 2011 is close to, but not coincident with, the dominant peak in previous epochs. A fainter point-like object was revealed at about 0.5 arcsec from this brightest peak. We suggest that these changes at the core of IRC+10216 are caused by dissipation of intervening circumstellar dust, as indicated by the brightening trend in the lightcurve extracted from the Catalina photometric survey. We tentatively identify the brightest peak in 2011 as the primary star of IRC+10216 and the fainter point-like source as a companion. The cause of non-detections of the companion candidate in earlier epochs is uncertain. These identifications need to be verified by monitoring of the core of IRC+10216 at high resolution in the future.
119 - Hyosun Kim 2013
With the advent of high-resolution high-sensitivity observations, spiral patterns have been revealed around several asymptotic giant branch (AGB) stars. Such patterns can provide possible evidence for the existence of central binary stars embedded in outflowing circumstellar envelopes. Here, we suggest the viability of explaining the previously observed incomplete ring-like patterns with the spiral-shell structure due to the motion of (unknown) binary components viewed at an inclination with respect to the orbital plane. We describe a method of extracting such spiral-shells from an incomplete ring-like pattern to place constraints on the characteristics of the central binary stars. The use of gas kinematics is essential in facilitating a detailed modeling for the three-dimensional structure of the circumstellar pattern. We show that a hydrodynamic radiative transfer model can reproduce the structure of the HC3N molecular line emission of the extreme carbon star, CIT 6. This method can be applied to other sources in the AGB phase and to the outer ring-like patterns of pre-planetary nebulae for probing the existence of embedded binary stars, which are highly anticipated with future observations using the Atacama Large Millimeter/submillimeter Array.
Recent observations of strikingly well-defined spirals in the circumstellar envelopes of asymptotic giant branch (AGB) stars point to the existence of binary companions in these objects. In the case of planet or brown dwarf mass companions, we invest igate the observational properties of the spiral-onion shell wakes due to the gravitational interaction of these companions with the outflowing circumstellar matter. Three dimensional hydrodynamical simulations at high resolution show that the substellar mass objects produce detectable signatures at 100 AU distance, for the wake induced by a Jupiter to brown dwarf mass object orbiting a solar mass AGB star. In particular, the arm pattern propagates with a speed depending on the local wind and sound speeds, implying possible variations in the arm separation in the wind acceleration region and/or in a slow wind with significant temperature variation. The pattern propagation speeds of the inner and outer boundaries differ by twice the sound speed, leading to the overlap of high density boundaries in slow winds and producing a subpattern of the spiral arm feature. Vertically, the wake forms concentric arcs with angular sizes anticorrelated to the wind Mach number. We provide an empirical formula for the peak density enhancement as a function of the mass, orbital distance, and velocity of the object as well as the wind and local sound speeds. In typical condition of AGB envelopes, the arm-interarm density contrast can be greater than 30 % of the background density within a distance of ~10(M_p/M_J) AU for the object mass M_p in units of Jupiter mass M_J. These results suggest that such features may probe unseen substellar mass objects embedded in the winds of AGB stars and may be useful in planning future high sensitivity/resolution observations with ALMA.
Beyond the main sequence solar type stars undergo extensive mass loss, providing an environment where planet and brown dwarf companions interact with the surrounding material. To examine the interaction of substellar mass objects embedded in the stel lar wind of an asymptotic giant branch (AGB) star, three dimensional hydrodynamical simulations at high resolution have been calculated utilizing the FLASH adaptive mesh refinement code. Attention is focused on the perturbation of the substellar mass objects on the morphology of the outflowing circumstellar matter. In particular, we determine the properties of the resulting spiral density wake as a function of the mass, orbital distance, and velocity of the object as well as the wind velocity and its sound velocity. Our results suggest that future observations of the spiral pattern may place important constraints on the properties of the unseen low mass companion in the outflowing stellar wind.
110 - Hyosun Kim , 2008
In many astrophysical situations, as in the coalescence of supermassive black hole pairs at gas rich galactic nuclei, the dynamical friction experienced by an object is a combination of its own wake as well as the wakes of its companions. Using a sem i-analytic approach, we investigate the composite wake due to, and the resulting drag forces on, double perturbers that are placed at the opposite sides of the orbital center and move on a circular orbit in a uniform gaseous medium. The circular orbit makes the wake of each perturber asymmetric, creating an overdense tail at the trailing side. The tail not only drags the perturber backward but it also exerts a positive torque on the companion. For equal-mass perturbers, the positive torque created by the companion wake is, on average, a fraction ~40-50% of the negative torque created by its own wake, but this fraction may be even larger for perturbers moving subsonically. This suggests that the orbital decay of a perturber in a double system, especially in the subsonic regime, can take considerably longer than in isolation. We provide the fitting formulae for the forces due to the companion wake and discuss our results in light of recent numerical simulations for mergers of binary black holes.
We investigate the gravitational wake due to, and dynamical friction on, a perturber moving on a circular orbit in a uniform gaseous medium using a semi-analytic method. This work is a straightforward extension of Ostriker (1999) who studied the case of a straight-line trajectory. The circular orbit causes the bending of the wake in the background medium along the orbit, forming a long trailing tail. The wake distribution is thus asymmetric, giving rise to the drag forces in both opposite (azimuthal) and lateral (radial) directions to the motion of the perturber, although the latter does not contribute to orbital decay much. For subsonic motion, the density wake with a weak tail is simply a curved version of that in Ostriker and does not exhibit the front-back symmetry. The resulting drag force in the opposite direction is remarkably similar to the finite-time, linear-trajectory counterpart. On the other hand, a supersonic perturber is able to overtake its own wake, possibly multiple times, and develops a very pronounced tail. The supersonic tail surrounds the perturber in a trailing spiral fashion, enhancing the perturbed density at the back as well as far front of the perturber. We provide the fitting formulae for the drag forces as functions of the Mach number, whose azimuthal part is surprisingly in good agreement with the Ostrikers formula, provided Vp t=2 Rp, where Vp and Rp are the velocity and orbital radius of the perturber, respectively.
We present wide-field JHKs-band photometric observations of the three compact HII regions G48.9-0.3, G49.0-0.3, and G49.2-0.3 in the active star-forming region W51B. The star clusters inside the three compact HII regions show the excess number of sta rs in the J-Ks histograms compared with reference fields. While the mean color excess ratio E(J-H)/E(H-Ks) of the three compact HII regions are similar to ~ 2.07, the visual extinctions toward them are somewhat different: ~ 17 mag for G48.9-0.3 and G49.0-0.3; ~ 23 mag for G49.2-0.3. Based on their sizes and brightnesses, we suggest that the age of each compact HII region is =< 2 Myr. The inferred total stellar mass, ~ 1.4 x 10^4 M_sun, of W51B makes it one of the most active star forming regions in the Galaxy with the star formation efficiency of ~ 10 %.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا