ﻻ يوجد ملخص باللغة العربية
In many astrophysical situations, as in the coalescence of supermassive black hole pairs at gas rich galactic nuclei, the dynamical friction experienced by an object is a combination of its own wake as well as the wakes of its companions. Using a semi-analytic approach, we investigate the composite wake due to, and the resulting drag forces on, double perturbers that are placed at the opposite sides of the orbital center and move on a circular orbit in a uniform gaseous medium. The circular orbit makes the wake of each perturber asymmetric, creating an overdense tail at the trailing side. The tail not only drags the perturber backward but it also exerts a positive torque on the companion. For equal-mass perturbers, the positive torque created by the companion wake is, on average, a fraction ~40-50% of the negative torque created by its own wake, but this fraction may be even larger for perturbers moving subsonically. This suggests that the orbital decay of a perturber in a double system, especially in the subsonic regime, can take considerably longer than in isolation. We provide the fitting formulae for the forces due to the companion wake and discuss our results in light of recent numerical simulations for mergers of binary black holes.
Following a wave-mechanical treatment we calculate the drag force exerted by an infinite homogeneous background of stars on a perturber as this makes its way through the system. We recover Chandrasekhars classical dynamical friction (DF) law with a m
We investigate the gravitational wake due to, and dynamical friction on, a perturber moving on a circular orbit in a uniform gaseous medium using a semi-analytic method. This work is a straightforward extension of Ostriker (1999) who studied the case
We use three-dimensional hydrodynamic simulations to investigate the nonlinear gravitational responses of gas to, and the resulting drag forces on, very massive perturbers moving on circular orbits. This work extends our previous studies that explore
In this paper, we explore the impact of a galactic bar on the inspiral time-scale of a massive perturber (MP) within a Milky Way-like galaxy. We integrate the orbit of MPs in a multi-component galaxy model via a semi-analytical approach including an
We consider the gravitational force exerted on a point-like perturber of mass $M$ travelling within a uniform gaseous, opaque medium at constant velocity $V$. The perturber irradiates the surrounding gas with luminosity $L$. The diffusion of the heat