ﻻ يوجد ملخص باللغة العربية
Beyond the main sequence solar type stars undergo extensive mass loss, providing an environment where planet and brown dwarf companions interact with the surrounding material. To examine the interaction of substellar mass objects embedded in the stellar wind of an asymptotic giant branch (AGB) star, three dimensional hydrodynamical simulations at high resolution have been calculated utilizing the FLASH adaptive mesh refinement code. Attention is focused on the perturbation of the substellar mass objects on the morphology of the outflowing circumstellar matter. In particular, we determine the properties of the resulting spiral density wake as a function of the mass, orbital distance, and velocity of the object as well as the wind velocity and its sound velocity. Our results suggest that future observations of the spiral pattern may place important constraints on the properties of the unseen low mass companion in the outflowing stellar wind.
This White Paper describes the opportunities for discovery of Jupiter-mass objects with 300K atmospheres. The discovery and characterization of such cold objects is vital for understanding the low-mass terminus of the initial mass function and for op
The rotational spectral modulation (spectro-photometric variability) of brown dwarfs is usually interpreted as a sign of the presence of inhomogeneous cloud covers in the atmosphere. This paper aims at exploring the role of temperature fluctuations i
The presence of a close, low-mass companion is thought to play a substantial and perhaps necessary role in shaping post-Asymptotic Giant Branch and Planetary Nebula outflows. During post-main-sequence evolution, radial expansion of the primary star,
We perform three-dimensional numerical simulations of stellar winds of early-M dwarf stars. Our simulations incorporate observationally reconstructed large-scale surface magnetic maps, suggesting that the complexity of the magnetic field can play an
A significant fraction of isolated white dwarfs host magnetic fields in excess of a MegaGauss. Observations suggest that these fields originate in interacting binary systems where the companion is destroyed thus leaving a singular, highly-magnetized