ترغب بنشر مسار تعليمي؟ اضغط هنا

HST Images Reveal Dramatic Changes in the Core of IRC+10216

270   0   0.0 ( 0 )
 نشر من قبل Hyosun Kim
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Hyosun Kim




اسأل ChatGPT حول البحث

IRC+10216 is the nearest carbon star with a very high mass-loss rate. The existence of a binary companion has been hinted by indirect observational evidence, such as the bipolar morphology of its nebula and a spiral-like pattern in its circumstellar material; however, to date, no companion has been identified. We have examined archival Hubble Space Telescope images of IRC+10216, and find that the images taken in 2011 exhibit dramatic changes in its innermost region from those taken at earlier epochs. The scattered light is more spread out in 2011. After proper motion correction, the brightest peak in 2011 is close to, but not coincident with, the dominant peak in previous epochs. A fainter point-like object was revealed at about 0.5 arcsec from this brightest peak. We suggest that these changes at the core of IRC+10216 are caused by dissipation of intervening circumstellar dust, as indicated by the brightening trend in the lightcurve extracted from the Catalina photometric survey. We tentatively identify the brightest peak in 2011 as the primary star of IRC+10216 and the fainter point-like source as a companion. The cause of non-detections of the companion candidate in earlier epochs is uncertain. These identifications need to be verified by monitoring of the core of IRC+10216 at high resolution in the future.



قيم البحث

اقرأ أيضاً

A single dish monitoring of millimeter maser lines SiS J=14-13 and HCN nu_2 = 1^f J=3-2 and several other rotational lines is reported for the archetypal carbon star IRC+10216. Relative line strength variations of 5%~30% are found for eight molecular line features with respect to selected reference lines. Definite line-shape variation is found in limited velocity intervals of the SiS and HCN line profiles. The asymmetrical line profiles of the two lines are mainly due to the varying components. Their dominant varying components of the line profiles have similar periods and phases as the IR light variation, although both quantities show some degree of velocity dependence; there is also variability asymmetry between the blue and red line wings of both lines. Combining the velocities and amplitudes with a wind velocity model, we suggest that the line profile variations are due to SiS and HCN masing lines emanating from the wind acceleration zone. The possible link of the variabilities to thermal, dynamical and/or chemical processes within or under this region is also discussed.
78 - Hyosun Kim 2021
Six images of IRC+10216 taken by the Hubble Space Telescope at three epochs in 2001, 2011, and 2016 are compared in the rest frame of the central carbon star. An accurate astrometry has been achieved with the help of Gaia Data Release 2. The position s of the carbon star in the individual epochs are determined using its known proper motion, defining the rest frame of the star. In 2016, a local brightness peak with compact and red nature is detected at the stellar position. A comparison of the color maps between 2016 and 2011 epochs reveals that the reddest spot moved along with the star, suggesting a possibility of its being the dusty material surrounding the carbon star. Relatively red, ambient region is distributed in an $Omega$ shape and well corresponds to the dusty disk previously suggested based on near-infrared polarization observations. In a larger scale, differential proper motion of multiple ring-like pattern in the rest frame of the star is used to derive the average expansion velocity of transverse wind components, resulting in $sim$ 12.5 km s$^{-1}$ ($d$/123 pc), where $d$ is the distance to IRC+10216. Three dimensional geometry is implied from its comparison with the line-of-sight wind velocity determined from half-widths of submillimeter emission line profiles of abundant molecules. Uneven temporal variations in brightness for different searchlight beams and anisotropic distribution of extended halo are revisited in the context of the stellar light illumination through a porous envelope with postulated longer-term variations for a period of $lesssim10$ years.
We present the detection of C4H2 for first time in the envelope of the C-rich AGB star IRC+10216 based on high spectral resolution mid-IR observations carried out with the Texas Echelon-cross-Echelle Spectrograph (TEXES) mounted on the Infrared Teles cope Facility (IRTF). The obtained spectrum contains 24 narrow absorption features above the detection limit identified as lines of the ro-vibrational C4H2 band nu6+nu8(sigma_u^+). The analysis of these lines through a ro-vibrational diagram indicates that the column density of C4H2 is 2.4(1.5)E+16 cm^(-2). Diacetylene is distributed in two excitation populations accounting for 20 and 80% of the total column density and with rotational temperatures of 47(7) and 420(120) K, respectively. This two-folded rotational temperature suggests that the absorbing gas is located beyond ~0.4~20R* from the star with a noticeable cold contribution outwards from ~10~500R*. This outer shell matches up with the place where cyanoacetylenes and carbon chains are known to form due to the action of the Galactic dissociating radiation field on the neutral gas coming from the inner layers of the envelope.
New high-resolution far-infrared (FIR) observations of both ortho- and para-NH3 transitions toward IRC+10216 were obtained with Herschel, with the goal of determining the ammonia abundance and constraining the distribution of NH3 in the envelope of I RC+10216. We used the Heterodyne Instrument for the Far Infrared (HIFI) on board Herschel to observe all rotational transitions up to the J=3 level (three ortho- and six para-NH3 lines). We conducted non-LTE multilevel radiative transfer modelling, including the effects of near-infrared (NIR) radiative pumping through vibrational transitions. We found that NIR pumping is of key importance for understanding the excitation of rotational levels of NH3. The derived NH3 abundances relative to molecular hydrogen were (2.8+-0.5)x10^{-8} for ortho-NH3 and (3.2^{+0.7}_{-0.6})x10^{-8} for para-NH3, consistent with an ortho/para ratio of 1. These values are in a rough agreement with abundances derived from the inversion transitions, as well as with the total abundance of NH3 inferred from the MIR absorption lines. To explain the observed rotational transitions, ammonia must be formed near to the central star at a radius close to the end of the wind acceleration region, but no larger than about 20 stellar radii (1 sigma confidence level).
Linear carbon chains are common in various types of astronomical molecular sources. Possible formation mechanisms involve both bottom-up and top-down routes. We have carried out a combined observational and modeling study of the formation of carbon c hains in the C-star envelope IRC+10216, where the polymerization of acetylene and hydrogen cyanide induced by ultraviolet photons can drive the formation of linear carbon chains of increasing length. We have used ALMA to map the emission of 3 mm rotational lines of the hydrocarbon radicals C2H, C4H, and C6H, and the CN-containing species CN, C3N, HC3N, and HC5N with an angular resolution of 1. The spatial distribution of all these species is a hollow, 5-10 wide, spherical shell located at a radius of 10-20 from the star, with no appreciable emission close to the star. Our observations resolve the broad shell of carbon chains into thinner sub-shells which are 1-2 wide and not fully concentric, indicating that the mass loss process has been discontinuous and not fully isotropic. The radial distributions of the species mapped reveal subtle differences: while the hydrocarbon radicals have very similar radial distributions, the CN-containing species show more diverse distributions, with HC3N appearing earlier in the expansion and the radical CN extending later than the rest of the species. The observed morphology can be rationalized by a chemical model in which the growth of polyynes is mainly produced by rapid gas-phase chemical reactions of C2H and C4H radicals with unsaturated hydrocarbons, while cyanopolyynes are mainly formed from polyynes in gas-phase reactions with CN and C3N radicals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا