ترغب بنشر مسار تعليمي؟ اضغط هنا

68 - Hsi-Sheng Goan , Po-Wen Chen , 2011
An extremely useful evolution equation that allows systematically calculating the two-time correlation functions (CFs) of system operators for non-Markovian open (dissipative) quantum systems is derived. The derivation is based on perturbative quantu m master equation approach, so non-Markovian open quantum system models that are not exactly solvable can use our derived evolution equation to easily obtain their two-time CFs of system operators, valid to second order in the system-environment interaction. Since the form and nature of the Hamiltonian are not specified in our derived evolution equation, our evolution equation is applicable for bosonic and/or fermionic environments and can be applied to a wide range of system-environment models with any factorized (separable) system-environment initial states (pure or mixed). When applied to a general model of a system coupled to a finite-temperature bosonic environment with a system coupling operator L in the system-environment interaction Hamiltonian, the resultant evolution equation is valid for both L = L^+ and L eq L^+ cases, in contrast to those evolution equations valid only for L = L^+ case in the literature. The derived equation that generalizes the quantum regression theorem (QRT) to the non-Markovian case will have broad applications in many different branches of physics. We then give conditions on which the QRT holds in the weak system-environment coupling case, and apply the derived evolution equation to a problem of a two-level system (atom) coupled to a finite-temperature bosonic environment (electromagnetic fields) with L eq L^+.
We evaluate the non-Markovian finite-temperature two-time correlation functions (CFs) of system operators of a pure-dephasing spin-boson model in two different ways, one by the direct exact operator technique and the other by the recently derived evo lution equations, valid to second order in the system-environment interaction Hamiltonian. This pure-dephasing spin-boson model that is exactly solvable has been extensively studied as a simple decoherence model. However, its exact non-Markovian finite-temperature two-time system operator CFs, to our knowledge, have not been presented in the literature. This may be mainly due to the fact, illustrated in this article, that in contrast to the Markovian case, the time evolution of the reduced density matrix of the system (or the reduced quantum master equation) alone is not sufficient to calculate the two-time system operator CFs of non-Markovian open systems. The two-time CFs obtained using the recently derived evolution equations in the weak system-environment coupling case for this non-Markovian pure-dephasing model happen to be the same as those obtained from the exact evaluation. However, these results significantly differ from the non-Markovian two-time CFs obtained by wrongly directly applying the quantum regression theorem (QRT), a useful procedure to calculate the two-time CFs for weak-coupling Markovian open systems. This demonstrates clearly that the recently derived evolution equations generalize correctly the QRT to non-Markovian finite-temperature cases. It is believed that these evolution equations will have applications in many different branches of physics.
We demonstrate how gradient ascent pulse engineering optimal control methods can be implemented on donor electron spin qubits in Si semiconductors with an architecture complementary to the original Kanes proposal. We focus on the high-fidelity contro lled-NOT (CNOT) gate and explicitly find its digitized control sequences by optimizing its fidelity over the external controls of the hyperfine A and exchange J interactions. This high-fidelity CNOT gate has an error of about $10^{-6}$, below the error threshold required for fault-tolerant quantum computation, and its operation time of 100ns is about 3 times faster than 297ns of the proposed global control scheme. It also relaxes significantly the stringent distance constraint of two neighboring donor atoms of 10~20nm as reported in the original Kanes proposal to about 30nm in which surface A and J gates may be built with current fabrication technology. The effects of the control voltage fluctuations, the dipole-dipole interaction and the electron spin decoherence on the CNOT gate fidelity are also discussed.
We propose a scheme to demonstrate the electromagnetically induced transparency (EIT) in a system of a superconducting Cooper-pair box coupled to a nanomechanical resonator. In this scheme, the nanomechanical resonator plays an important role to cont ribute additional auxiliary energy levels to the Cooper-pair box so that the EIT phenomenon could be realized in such a system. We call it here resonator-assisted induced transparency (RAIT). This RAIT technique provides a detection scheme in a real experiment to measure physical properties, such as the vibration frequency and the decay rate, of the coupled nanomechanical resonator.
Using the spin wave approximation, we study the decoherence dynamics of a central spin coupled to an antiferromagnetic environment under the application of an external global magnetic field. The external magnetic field affects the decoherence process through its effect on the antiferromagnetic environment. It is shown explicitly that the decoherence factor which displays a Gaussian decay with time depends on the strength of the external magnetic field and the crystal anisotropy field in the antiferromagnetic environment. When the values of the external magnetic field is increased to the critical field point at which the spin-flop transition (a first-order quantum phase transition) happens in the antiferromagnetic environment, the decoherence of the central spin reaches its highest point. This result is consistent with several recent quantum phase transition witness studies. The influences of the environmental temperature on the decoherence behavior of the central spin are also investigated.
We study two continuous variable systems (or two harmonic oscillators) and investigate their entanglement evolution under the influence of non-Markovian thermal environments. The continuous variable systems could be two modes of electromagnetic field s or two nanomechanical oscillators in the quantum domain. We use quantum open system method to derive the non-Markovian master equations of the reduced density matrix for two different but related models of the continuous variable systems. The two models both consist of two interacting harmonic oscillators. In model A, each of the two oscillators is coupled to its own independent thermal reservoir, while in model B the two oscillators are coupled to a common reservoir. To quantify the degrees of entanglement for the bipartite continuous variable systems in Gaussian states, logarithmic negativity is used. We find that the dynamics of the quantum entanglement is sensitive to the initial states, the oscillator-oscillator interaction, the oscillator-environment interaction and the coupling to a common bath or to different, independent baths.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا