ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal control of the silicon-based donor electron spin quantum computing

284   0   0.0 ( 0 )
 نشر من قبل Hsi-Sheng Goan
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate how gradient ascent pulse engineering optimal control methods can be implemented on donor electron spin qubits in Si semiconductors with an architecture complementary to the original Kanes proposal. We focus on the high-fidelity controlled-NOT (CNOT) gate and explicitly find its digitized control sequences by optimizing its fidelity over the external controls of the hyperfine A and exchange J interactions. This high-fidelity CNOT gate has an error of about $10^{-6}$, below the error threshold required for fault-tolerant quantum computation, and its operation time of 100ns is about 3 times faster than 297ns of the proposed global control scheme. It also relaxes significantly the stringent distance constraint of two neighboring donor atoms of 10~20nm as reported in the original Kanes proposal to about 30nm in which surface A and J gates may be built with current fabrication technology. The effects of the control voltage fluctuations, the dipole-dipole interaction and the electron spin decoherence on the CNOT gate fidelity are also discussed.

قيم البحث

اقرأ أيضاً

We propose a method to electrically control electron spins in donor-based qubits in silicon. By taking advantage of the hyperfine coupling difference between a single-donor and a two-donor quantum dot, spin rotation can be driven by inducing an elect ric dipole between them and applying an alternating electric field generated by in-plane gates. These qubits can be coupled with exchange interaction controlled by top detuning gates. The qubit device can be fabricated deep in the silicon lattice with atomic precision by scanning tunneling probe technique. We have combined a large-scale full band atomistic tight-binding modeling approach with a time-dependent effective Hamiltonian description, providing a design with quantitative guidelines.
Doped Si is a promising candidate for quantum computing due to its scalability properties, long spin coherence times, and the astonishing progress on Si technology and miniaturization in the last few decades. This proposal for a quantum computer ulti mately relies on the quantum control of electrons bound to donors near a Si/barrier (e.g. SiO2) interface. We address here several important issues and define critical parameters that establish the conditions that allow the manipulation of donor electrons in Si by means of external electric and magnetic fields.
Silicon nanoelectronic devices can host single-qubit quantum logic operations with fidelity better than 99.9%. For the spins of an electron bound to a single donor atom, introduced in the silicon by ion implantation, the quantum information can be st ored for nearly 1 second. However, manufacturing a scalable quantum processor with this method is considered challenging, because of the exponential sensitivity of the exchange interaction that mediates the coupling between the qubits. Here we demonstrate the conditional, coherent control of an electron spin qubit in an exchange-coupled pair of $^{31}$P donors implanted in silicon. The coupling strength, $J = 32.06 pm 0.06$ MHz, is measured spectroscopically with unprecedented precision. Since the coupling is weaker than the electron-nuclear hyperfine coupling $A approx 90$ MHz which detunes the two electrons, a native two-qubit Controlled-Rotation gate can be obtained via a simple electron spin resonance pulse. This scheme is insensitive to the precise value of $J$, which makes it suitable for the scale-up of donor-based quantum computers in silicon that exploit the Metal-Oxide-Semiconductor fabrication protocols commonly used in the classical electronics industry.
We propose a scheme for quantum information processing based on donor electron spins in semiconductors, with an architecture complementary to the original Kane proposal. We show that a naive implementation of electron spin qubits provides only modest improvement over the Kane scheme, however through the introduction of global gate control we are able to take full advantage of the fast electron evolution timescales. We estimate that the latent clock speed is 100-1000 times that of the nuclear spin quantum computer with the ratio $T_{2}/T_{ops}$ approaching the $10^{6}$ level.
Recent advances in quantum error correction (QEC) codes for fault-tolerant quantum computing cite{Terhal2015} and physical realizations of high-fidelity qubits in a broad range of platforms cite{Kok2007, Brown2011, Barends2014, Waldherr2014, Dolde201 4, Muhonen2014, Veldhorst2014} give promise for the construction of a quantum computer based on millions of interacting qubits. However, the classical-quantum interface remains a nascent field of exploration. Here, we propose an architecture for a silicon-based quantum computer processor based entirely on complementary metal-oxide-semiconductor (CMOS) technology, which is the basis for all modern processor chips. We show how a transistor-based control circuit together with charge-storage electrodes can be used to operate a dense and scalable two-dimensional qubit system. The qubits are defined by the spin states of a single electron confined in a quantum dot, coupled via exchange interactions, controlled using a microwave cavity, and measured via gate-based dispersive readout cite{Colless2013}. This system, based entirely on available technology and existing components, is compatible with general surface code quantum error correction cite{Terhal2015}, enabling large-scale universal quantum computation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا