ﻻ يوجد ملخص باللغة العربية
We study two continuous variable systems (or two harmonic oscillators) and investigate their entanglement evolution under the influence of non-Markovian thermal environments. The continuous variable systems could be two modes of electromagnetic fields or two nanomechanical oscillators in the quantum domain. We use quantum open system method to derive the non-Markovian master equations of the reduced density matrix for two different but related models of the continuous variable systems. The two models both consist of two interacting harmonic oscillators. In model A, each of the two oscillators is coupled to its own independent thermal reservoir, while in model B the two oscillators are coupled to a common reservoir. To quantify the degrees of entanglement for the bipartite continuous variable systems in Gaussian states, logarithmic negativity is used. We find that the dynamics of the quantum entanglement is sensitive to the initial states, the oscillator-oscillator interaction, the oscillator-environment interaction and the coupling to a common bath or to different, independent baths.
We investigate the entanglement dynamics of continuous-variable quantum channels in terms of an entangled squeezed state of two cavity fields in a general non-Markovian environment. Using the Feynman-Vernon influence functional theory in the coherent
Entanglement is one of the most fascinating features arising from quantum-mechanics and of great importance for quantum information science. Of particular interest are so-called hybrid-entangled states which have the intriguing property that they con
The dynamics of an open system crucially depends on the correlation function of its environment, $C_B(t)$. We show that for thermal non-Harmonic environments $C_B(t)$ may not decay to zero but to an offset, $C_0>0$. The presence of such offset is det
We provide a general discussion of the Liouvillian spectrum for a system coupled to a non-Markovian bath using Floquet theory. This approach is suitable when the system is described by a time-convolutionless master equation with time-periodic rates.
With the rise of quantum technologies, it is necessary to have practical and preferably non-destructive methods to measure and read-out from such devices. A current line of research towards this has focussed on the use of ancilla systems which couple