ترغب بنشر مسار تعليمي؟ اضغط هنا

The effects of $phi$-meson on properties of hyperon stars are studied systematically in the framework of the density dependent relativistic mean field (DDRMF) model. The $phi$-meson shifts hyperon threshold to a higher density and reduces the hyperon fractions in neutron star cores. It also strongly stiffens the equation of state (EoS) calculated with various DDRMF effective interactions and increases the maximum mass of hyperon stars, but only a few effective interactions survive under the constraints from recent astrophysical observations. In the DDRMF model, the conformal limit of sound velocity is still in a strong tension with the fact that the maximum mass of neutron stars obtained in theoretical calculations reaches about two solar masses. Based on different interior composition assumptions, we discuss the possibility of the secondary object of GW190814 as a neutron star. When $phi$-meson is considered, DD-ME2 and DD-MEX support that the secondary object of GW190814 is a hyperon star rapidly rotating with Kepler frequency.
By combining the density matrix renormalization group (DMRG) method with Gutzwiller projected wave functions, we provide clear evidence that the ground state of the SU(4) Kugel-Khomskii spin-orbital model on the triangular lattice can be well describ ed by a ``single Gutzwiller projected wave function with an emergent parton Fermi surface, despite it exhibits strong finite size effect and even-odd discrepancy in quasi-one-dimensional cylinders. This ground state preserves SU(4) symmetry, but spontaneously breaks translational symmetry by doubling the unit cell along one of the lattice vector directions. The finite size effect and even-odd discrepancy can be resolved by the fact that the parton Fermi surface consists of open orbits in the reciprocal space. Thereby, a nematic spin-orbital liquid state is expected in the two-dimensional limit. Furthermore, our DMRG results indicate that the fluctuating stripes are critical and the central charge of each stripe is $c=3$, in agreement with the SU(4)$_1$ Wess-Zumino-Witten conformal field theory. All these results are consistent with the Lieb-Schultz-Mattis-Oshikawa-Hastings theorem.
New effective $Lambda N$ interactions are proposed for the density dependent relativistic mean field model. The multidimensionally constrained relativistic mean field model is used to calculate ground state properties of eleven known $Lambda$ hypernu clei with $Age 12$ and the corresponding core nuclei. Based on effective $NN$ interactions DD-ME2 and PKDD, the ratios $R_sigma$ and $R_omega$ of scalar and vector coupling constants between $Lambda N$ and $NN$ interactions are determined by fitting calculated $Lambda$ separation energies to experimental values. We propose six new effective interactions for $Lambda$ hypernuclei: DD-ME2-Y1, DD-ME2-Y2, DD-ME2-Y3, PKDD-Y1, PKDD-Y2 and PKDD-Y3 with three ways of grouping and including these eleven hypernuclei in the fitting. It is found that the two ratios $R_sigma$ and $R_omega$ are correlated well and there holds a good linear relation between them. The statistical errors of the ratio parameters in these effective interactions are analyzed. These new effective interactions are used to study the equation of state of hypernuclear matter and neutron star properties with hyperons.
Symmetry-protected trivial (SPt) phases of matter are the product-state analogue of symmetry-protected topological (SPT) phases. This means, SPt phases can be adiabatically connected to a product state by some path that preserves the protecting symme try. Moreover, SPt and SPT phases can be adiabatically connected to each other when interaction terms that break the symmetries protecting the SPT order are added in the Hamiltonian. It is also known that spin-1 SPT phases in quantum spin chains can emerge as effective intermediate phases of spin-2 Hamiltonians. In this paper we show that a similar scenario is also valid for SPt phases. More precisely, we show that for a given spin-2 quantum chain, effective intermediate spin-1 SPt phases emerge in some regions of the phase diagram, these also being adiabatically connected to non-trivial intermediate SPT phases. We characterize the phase diagram of our model by studying quantities such as the entanglement entropy, symmetry-related order parameters, and 1-site fidelities. Our numerical analysis uses Matrix Product States (MPS) and the infinite Time-Evolving Block Decimation (iTEBD) method to approximate ground states of the system in the thermodynamic limit. Moreover, we provide a field theory description of the possible quantum phase transitions between the SPt phases. Together with the numerical results, such a description shows that the transitions may be described by Conformal Field Theories (CFT) with central charge c=1. Our results are in agreement, and further generalize, those in [Y. Fuji, F. Pollmann, M. Oshikawa, Phys. Rev. Lett. 114, 177204 (2015)].
We study lattice wave functions obtained from the SU(2)$_1$ Wess-Zumino-Witten conformal field theory. Following Moore and Reads construction, the Kalmeyer-Laughlin fractional quantum Hall state is defined as a correlation function of primary fields. By an additional insertion of Kac-Moody currents, we associate a wave function to each state of the conformal field theory. These wave functions span the complete Hilbert space of the lattice system. On the cylinder, we study global properties of the lattice states analytically and correlation functions numerically using a Metropolis Monte Carlo method. By comparing short-range bulk correlations, numerical evidence is provided that the states with one current operator represent edge states in the thermodynamic limit. We show that the edge states with one Kac-Moody current of lowest order have a good overlap with low-energy excited states of a local Hamiltonian, for which the Kalmeyer-Laughlin state approximates the ground state. For some states, exact parent Hamiltonians are derived on the cylinder. These Hamiltonians are SU(2) invariant and nonlocal with up to four-body interactions.
We study $S=1$ spin liquid states on the kagome lattice constructed by Gutzwiller-projected $p_x+ip_y$ superconductors. We show that the obtained spin liquids are either non-Abelian or Abelian topological phases, depending on the topology of the ferm ionic mean-field state. By calculating the modular matrices $S$ and $T$, we confirm that projected topological superconductors are non-Abelian chiral spin liquid (NACSL). The chiral central charge and the spin Hall conductance we obtained agree very well with the $SO(3)_1$ (or, equivalently, $SU(2)_2$) field theory predictions. We propose a local Hamiltonian which may stabilize the NACSL. From a variational study we observe a topological phase transition from the NACSL to the $Z_2$ Abelian spin liquid.
Here we study the emergence of different Symmetry-Protected Topological (SPT) phases in a spin-2 quantum chain. We consider a Heisenberg-like model with bilinear, biquadratic, bicubic, and biquartic nearest-neighbor interactions, as well as uniaxial anisotropy. We show that this model contains four different effective spin-1 SPT phases, corresponding to different representations of the $(mathbb{Z}_2 times mathbb{Z}_2) + T$ symmetry group, where $mathbb{Z}_2$ is some $pi$-rotation in the spin internal space and $T$ is time-reversal. One of these phases is equivalent to the usual spin-1 Haldane phase, while the other three are different but also typical of spin-1 systems. The model also exhibits an $SO(5)$-Haldane phase. Moreover, we also find that the transitions between the different effective spin-1 SPT phases are continuous, and can be described by a $c=2$ conformal field theory. At such transitions, indirect evidence suggests a possible effective field theory of four massless Majorana fermions. The results are obtained by approximating the ground state of the system in the thermodynamic limit using Matrix Product States via the infinite Time Evolving Block Decimation method, as well as by effective field theory considerations. Our findings show, for the first time, that different large effective spin-1 SPT phases separated by continuous quantum phase transitions can be stabilized in a simple quantum spin chain.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا