ترغب بنشر مسار تعليمي؟ اضغط هنا

A unified theory for the SU(4) spin-orbital model on the triangular lattice

65   0   0.0 ( 0 )
 نشر من قبل Yi Zhou
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By combining the density matrix renormalization group (DMRG) method with Gutzwiller projected wave functions, we provide clear evidence that the ground state of the SU(4) Kugel-Khomskii spin-orbital model on the triangular lattice can be well described by a ``single Gutzwiller projected wave function with an emergent parton Fermi surface, despite it exhibits strong finite size effect and even-odd discrepancy in quasi-one-dimensional cylinders. This ground state preserves SU(4) symmetry, but spontaneously breaks translational symmetry by doubling the unit cell along one of the lattice vector directions. The finite size effect and even-odd discrepancy can be resolved by the fact that the parton Fermi surface consists of open orbits in the reciprocal space. Thereby, a nematic spin-orbital liquid state is expected in the two-dimensional limit. Furthermore, our DMRG results indicate that the fluctuating stripes are critical and the central charge of each stripe is $c=3$, in agreement with the SU(4)$_1$ Wess-Zumino-Witten conformal field theory. All these results are consistent with the Lieb-Schultz-Mattis-Oshikawa-Hastings theorem.



قيم البحث

اقرأ أيضاً

We study the effective spin-orbital model that describes the magnetism of 4$d^1$ or 5$d^1$ Mott insulators in ideal tricoordinated lattices. In the limit of vanishing Hunds coupling, the model has an emergent SU(4) symmetry which is made explicit by means of a Klein transformation on pseudospin degrees of freedom. Taking the hyperhoneycomb lattice as an example, we employ parton constructions with fermionic representations of the pseudospin operators to investigate possible quantum spin-orbital liquid states. We then use variational Monte Carlo (VMC) methods to compute the energies of the projected wave functions. Our numerical results show that the lowest-energy quantum liquid corresponds to a zero-flux state with a Fermi surface of four-color fermionic partons. In spite of the Fermi surface, we demonstrate that this state is stable against tetramerization. A combination of linear flavor wave theory and VMC applied to the complete microscopic model also shows that this liquid state is stable against the formation of collinear long-range order.
We study the effects of quantum fluctuations on a non-coplanar tetrahedral spin structure, which has a scalar chiral order, in the spin-1/2 multiple-spin exchange model with up to the six-spin exchange interactions on a triangular lattice. We find th at, in the linear spin-wave approximation, the tetrahedral structure survives the quantum fluctuations because spin waves do not soften in the whole parameter region of the tetrahedral-structure phase evaluated for the classical system. In the quantum corrections to the ground-state energy, sublattice magnetization, and scalar chirality, the effects of the quantum fluctuations are small for the ferromagnetic nearest-neighbor interactions and for the strong five-spin interactions. The six-spin interactions have little effect on the quantum corrections in the tetrahedral-structure phase. This calculation also corrects an error in the previously reported value of scalar chirality for the spin-1/2 multiple-spin exchange model with up to the four-spin exchange interactions.
In order to understand the properties of Mott insulators with strong ground state orbital fluctuations, we study the zero temperature properties of the SU(4) spin-orbital model on a square lattice. Exact diagonalizations of finite clusters suggest th at the ground state is disordered with a singlet-multiplet gap and possibly low-lying SU(4) singlets in the gap. An interpretation in terms of plaquette SU(4) singlets is proposed. The implications for LiNiO_2 are discussed.
Motivated by multiple possible physical realizations, we study the SU(4) quantum antiferromagnet with a fundamental representation on each site of the triangular lattice. We provide evidence for a gapless liquid ground state of this system with an em ergent Fermi surface of fractionalized fermionic partons coupled with a U(1) gauge field. Our conclusions are based on numerical simulations using the density matrix renormalization group (DMRG) method, which we support with a field theory analysis.
Majorana modes can arise as zero energy bound states in a variety of solid state systems. A two-dimensional phase supporting these quasiparticles, for instance, emerges on the surface of a topological superconductor with the zero modes localized at t he cores of vortices. At low energies, such a setup can be modeled by Majorana modes that interact with each other on the Abrikosov lattice. In experiments, the lattice is usually triangular. Motivated by the practical relevance, we explore the phase diagram of this Hubbard-like Majorana model using a combination of mean field theory and numerical simulation of thin torus geometries through the density matrix renormalization group algorithm. Our analysis indicates that attractive interactions between Majoranas can drive a phase transition in an otherwise gapped topological state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا