ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetry-protected intermediate trivial phases in quantum spin chains

273   0   0.0 ( 0 )
 نشر من قبل Roman Orus
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Symmetry-protected trivial (SPt) phases of matter are the product-state analogue of symmetry-protected topological (SPT) phases. This means, SPt phases can be adiabatically connected to a product state by some path that preserves the protecting symmetry. Moreover, SPt and SPT phases can be adiabatically connected to each other when interaction terms that break the symmetries protecting the SPT order are added in the Hamiltonian. It is also known that spin-1 SPT phases in quantum spin chains can emerge as effective intermediate phases of spin-2 Hamiltonians. In this paper we show that a similar scenario is also valid for SPt phases. More precisely, we show that for a given spin-2 quantum chain, effective intermediate spin-1 SPt phases emerge in some regions of the phase diagram, these also being adiabatically connected to non-trivial intermediate SPT phases. We characterize the phase diagram of our model by studying quantities such as the entanglement entropy, symmetry-related order parameters, and 1-site fidelities. Our numerical analysis uses Matrix Product States (MPS) and the infinite Time-Evolving Block Decimation (iTEBD) method to approximate ground states of the system in the thermodynamic limit. Moreover, we provide a field theory description of the possible quantum phase transitions between the SPt phases. Together with the numerical results, such a description shows that the transitions may be described by Conformal Field Theories (CFT) with central charge c=1. Our results are in agreement, and further generalize, those in [Y. Fuji, F. Pollmann, M. Oshikawa, Phys. Rev. Lett. 114, 177204 (2015)].

قيم البحث

اقرأ أيضاً

A symmetry-protected topologically ordered phase is a short-range entangled state, for which some imposed symmetry prohibits the adiabatic deformation into a trivial state which lacks entanglement. In this paper we argue that magnetization plateau st ates of one-dimensional antiferromagnets which satisfy the conditions $S-min$ odd integer, where $S$ is the spin quantum number and $m$ the magnetization per site, can be identified as symmetry-protected topological states if an inversion symmetry about the link center is present. This assertion is reached by mapping the antiferromagnet into a nonlinear sigma model type effective field theory containing a novel Berry phase term (a total derivative term) with a coefficient proportional to the quantity $S-m$, and then analyzing the topological structure of the ground state wave functional which is inherited from the latter term. A boson-vortex duality transformation is employed to examine the topological stability of the ground state in the absence/presence of a perturbation violating link-center inversion symmetry. Our prediction based on field theories is verified by means of a numerical study of the entanglement spectra of actual spin chains, which we find to exhibit twofold degeneracies when the aforementioned condition is met. We complete this study with a rigorous analysis using matrix product states.
138 - Shenghan Jiang , Ying Ran 2016
We present systematic constructions of tensor-network wavefunctions for bosonic symmetry protected topological (SPT) phases respecting both onsite and spatial symmetries. From the classification point of view, our results show that in spatial dimensi ons $d=1,2,3$, the cohomological bosonic SPT phases protected by a general symmetry group $SG$ involving onsite and spatial symmetries are classified by the cohomology group $H^{d+1}(SG,U(1))$, in which both the time-reversal symmetry and mirror reflection symmetries should be treated as anti-unitary operations. In addition, for every SPT phase protected by a discrete symmetry group and some SPT phases protected by continous symmetry groups, generic tensor-network wavefunctions can be constructed which would be useful for the purpose of variational numerical simulations. As a by-product, our results demonstrate a generic connection between rather conventional symmetry enriched topological phases and SPT phases via an anyon condensation mechanism.
We introduce the concepts of a symmetry-protected sign problem and symmetry-protected magic to study the complexity of symmetry-protected topological (SPT) phases of matter. In particular, we say a state has a symmetry-protected sign problem or symme try-protected magic, if finite-depth quantum circuits composed of symmetric gates are unable to transform the state into a non-negative real wave function or stabilizer state, respectively. We prove that states belonging to certain SPT phases have these properties, as a result of their anomalous symmetry action at a boundary. For example, we find that one-dimensional $mathbb{Z}_2 times mathbb{Z}_2$ SPT states (e.g. cluster state) have a symmetry-protected sign problem, and two-dimensional $mathbb{Z}_2$ SPT states (e.g. Levin-Gu state) have both a symmetry-protected sign problem and symmetry-protected magic. We also comment on the relation of a symmetry-protected sign problem to the computational wire property of one-dimensional SPT states and speculate about the greater implications of our results for measurement-based quantum computing.
122 - Meng Cheng , Chenjie Wang 2018
We study classification of interacting fermionic symmetry-protected topological (SPT) phases with both rotation symmetry and Abelian internal symmetries in one, two, and three dimensions. By working out this classification, on the one hand, we demons trate the recently proposed correspondence principle between crystalline topological phases and those with internal symmetries through explicit block-state constructions. We find that for the precise correspondence to hold it is necessary to change the central extension structure of the symmetry group by the $mathbb{Z}_2$ fermion parity. On the other hand, we uncover new classes of intrinsically fermionic SPT phases that are only enabled by interactions, both in 2D and 3D with four-fold rotation. Moreover, several new instances of Lieb-Schultz-Mattis-type theorems for Majorana-type fermionic SPTs are obtained and we discuss their interpretations from the perspective of bulk-boundary correspondence.
We investigate topological signatures in the short-time non-equilibrium dynamics of symmetry protected topological (SPT) systems starting from initial states which break the protecting symmetry. Naively, one might expect that topology loses meaning w hen a protecting symmetry is broken. Defying this intuition, we illustrate, in an interacting Su-Schrieffer-Heeger (SSH) model, how this combination of symmetry breaking and quench dynamics can give rise to both single-particle and many-body signatures of topology. From the dynamics of the symmetry broken state, we find that we are able to dynamically probe the equilibrium topological phase diagram of a symmetry respecting projection of the post-quench Hamiltonian. In the ensemble dynamics, we demonstrate how spontaneous symmetry breaking (SSB) of the protecting symmetry can result in a quantized many-body topological `invariant which is not pinned under unitary time evolution. We dub this `dynamical many-body topology (DMBT). We show numerically that both the pure state and ensemble signatures are remarkably robust, and argue that these non-equilibrium signatures should be quite generic in SPT systems, regardless of protecting symmetries or spatial dimension.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا