ﻻ يوجد ملخص باللغة العربية
We study $S=1$ spin liquid states on the kagome lattice constructed by Gutzwiller-projected $p_x+ip_y$ superconductors. We show that the obtained spin liquids are either non-Abelian or Abelian topological phases, depending on the topology of the fermionic mean-field state. By calculating the modular matrices $S$ and $T$, we confirm that projected topological superconductors are non-Abelian chiral spin liquid (NACSL). The chiral central charge and the spin Hall conductance we obtained agree very well with the $SO(3)_1$ (or, equivalently, $SU(2)_2$) field theory predictions. We propose a local Hamiltonian which may stabilize the NACSL. From a variational study we observe a topological phase transition from the NACSL to the $Z_2$ Abelian spin liquid.
We extend the scope of Kitaev spin liquids to non-Archimedean lattices. For the pentaheptite lattice, which results from the proliferation of Stone-Wales defects on the honeycomb lattice, we find an exactly solvable non-Abelian chiral spin liquid wit
Using a perturbative renormalization group approach, we show that the extended ($J_1$-$J_2$-$J_d$) Heisenberg model on the kagome lattice with a staggered chiral interaction ($J_chi$) can exhibit a gapless chiral quantum spin liquid phase. Within a c
We study the nearest neighbor $XXZ$ Heisenberg quantum antiferromagnet on the kagome lattice. Here we consider the effects of several perturbations: a) a chirality term, b) a Dzyaloshinski-Moriya term, and c) a ring-exchange type term on the bowties
We suggest a class of two-dimensional lattice spin Hamiltonians describing non-Abelian SU(2) chiral spin liquids - spin-analogues of fractional non-Abelian quantum Hall states- with gapped bulk and gapless chiral edge excitations described by the SU(
We establish the existence of a chiral spin liquid (CSL) as the exact ground state of the Kitaev model on a decorated honeycomb lattice, which is obtained by replacing each site in the familiar honeycomb lattice with a triangle. The CSL state spontan