ترغب بنشر مسار تعليمي؟ اضغط هنا

Dust grains can be efficiently accelerated and shattered in warm ionized medium (WIM) because of the turbulent motion. This effect is enhanced in starburst galaxies, where gas is ionized and turbulence is sustained by massive stars. Moreover, dust pr oduction by Type II supernovae (SNe II) can be efficient in starburst galaxies. In this paper, we examine the effect of shattering in WIM on the dust grains produced by SNe II. We find that although the grains ejected from SNe II are expected to be biased to large sizes ($aga 0.1 micron$, where $a$ is the grain radius) because of the shock destruction in supernova remnants, the shattering in WIM is efficient enough in $sim 5$ Myr to produce small grains if the metallicity is nearly solar or more. The production of small grains by shattering steepens the extinction curve. Thus, steepening of extinction curves by shattering should always be taken into account for the system where the metallicity is solar and the starburst age is typically larger than 5 Myr. These conditions may be satisfied not only in nearby starbursts but also in high redshift ($z>5$) quasars.
We investigate shattering and coagulation of dust grains in turbulent interstellar medium (ISM). The typical velocity of dust grain as a function of grain size has been calculated for various ISM phases based on a theory of grain dynamics in compress ible magnetohydrodynamic turbulence. In this paper, we develop a scheme of grain shattering and coagulation and apply it to turbulent ISM by using the grain velocities predicted by the above turbulence theory. Since large grains tend to acquire large velocity dispersions as shown by earlier studies, large grains tend to be shattered. Large shattering effects are indeed seen in warm ionized medium (WIM) within a few Myr for grains with radius $aga 10^{-6}$ cm. We also show that shattering in warm neutral medium (WNM) can limit the largest grain size in ISM ($asim 2times 10^{-5} mathrm{cm}$). On the other hand, coagulation tends to modify small grains since it only occurs when the grain velocity is small enough. Coagulation significantly modifies the grain size distribution in dense clouds (DC), where a large fraction of the grains with $a<10^{-6}$ cm coagulate in 10 Myr. In fact, the correlation among $R_V$, the carbon bump strength, and the ultraviolet slope in the observed Milky Way extinction curves can be explained by the coagulation in DC. It is possible that the grain size distribution in the Milky Way is determined by a combination of all the above effects of shattering and coagulation. Considering that shattering and coagulation in turbulence are effective if dust-to-gas ratio is typically more than $sim 1/10$ of the Galactic value, the regulation mechanism of grain size distribution should be different between metal-poor and metal-rich environments.
We report basic far-infrared (FIR) properties of eight blue compact dwarf galaxies (BCDs) observed by AKARI. We measure the fluxes at the four FIS bands (wavelengths of 65 um, 90 um, 140 um, and 160 um). Based on these fluxes, we estimate basic quant ities about dust: dust temperature, dust mass, and total FIR luminosity. We find that the typical dust temperature of the BCD sample is systematically higher than that of normal spiral galaxies, although there is a large variety. The interstellar radiation field estimated from the dust temperature ranges up to 100 times of the Galactic value. This confirms the concentrated star-forming activity in BCDs. The star formation rate can be evaluated from the FIR luminosity as 0.01--0.5 $M_odot$ yr$^{-1}$. Combining this quantity with gas mass taken from the literature, we estimate the gas consumption timescales (gas mass divided by the star formation rate), which prove to span a wide range from 1 Gyr to 100 Gyr. A natural interpretation of this large variety can be provided by intermittent star formation activity. We finally show the relation between dust-to-gas ratio and metallicity (we utilize our estimate of dust mass, and take other necessary quantities from the literature). There is a positive correlation between dust-to-gas ratio and metallicity as expected from chemical evolution models.
A recent data analysis of the far-infrared (FIR) map of the Galaxy and the Magellanic Clouds has shown that there is a tight correlation between two FIR colours: the 60 um-100 um and 100 um-140 um colours. This FIR colour relation called ``main corre lation can be interpreted as indicative of a sequence of various interstellar radiation fields with a common FIR optical property of grains. In this paper, we constrain the FIR optical properties of grains by comparing the calculated FIR colours with the observational main correlation. We show that neither of the ``standard grain species (i.e. astronomical silicate and graphite grains) reproduces the main correlation. However, if the emissivity index at ~ 100--200 um is changed to ~ 1--1.5 (not ~ 2 as the above two species), the main correlation can be successfully explained. Thus, we propose that the FIR emissivity index is ~ 1--1.5 for the dust in the Galaxy and the Magellanic Clouds at ~ 100--200 um. We also consider the origin of the minor correlation called ``sub-correlation, which can be used to estimate the Galactic star formation rate.
Recent observations have revealed that damped Ly$alpha$ clouds (DLAs) host star formation activity. In order to examine if such star formation activity can be triggered by ionization fronts, we perform high-resolution hydrodynamics and radiative tran sfer simulations of the effect of radiative feedback from propagating ionization fronts on high-density clumps. We examine two sources of ultraviolet (UV) radiation field to which high-redshift (z ~ 3) galaxies could be exposed: one corresponding to the UV radiation originating from stars within the DLA, itself, and the other corresponding to the UV background radiation. We find that, for larger clouds, the propagating I-fronts created by local stellar sources can trigger cooling instability and collapse of significant part, up to 85%, of the cloud, creating conditions for star formation in a timescale of a few Myr. The passage of the I-front also triggers collapse of smaller clumps (with radii below ~4 pc), but in these cases the resulting cold and dense gas does not reach conditions conducive to star formation. Assuming that 85% of the gas initially in the clump is converted into stars, we obtain a star formation rate of $sim 0.25 M_odot {yr}^{-1} {kpc}^{-2}$. This is somewhat higher than the value derived from recent observations. On the other hand, the background UV radiation which has harder spectrum fails to trigger cooling and collapse. Instead, the hard photons which have long mean-free-path heat the dense clumps, which as a result expand and essentially dissolve in the ambient medium. Therefore, the star formation activity in DLAs is strongly regulated by the radiative feedback, both from the external UV background and internal stellar sources and we predict quiescent evolution of DLAs (not starburst-like evolution).
The small grain sizes produced by Type II supernova (SN II) models in young, metal-poor galaxies make the appearance of their infrared (IR) spectral energy distribution (SED) quite different from that of nearby, older galaxies. To study this effect, we have developed a model for the evolution of dust content and the IR SED of low-metallicity, extremely young galaxies based on Hirashita et al. (2002). We find that, even in the intense ultraviolet (UV) radiation field of very young galaxies, small silicate grains are subject to stochastic heating resulting in a broad temperature distribution and substantial MIR continuum emission. Larger carbonaceous grains are in thermal equilibrium at T simeq 50 - 100K, and they also contribute to the MIR. We present the evolution of SEDs and IR extinction of very young, low-metallicity galaxies. The IR extinction curve is also shown. In the first few Myrs, the emission peaks at lambda sim 30-50um at later times dust self-absorption decreases the apparent grain temperatures, shifting the bulk of the emission into the submillimetre band. We successfully apply the model to the IR SED of a low metallicity (1/41 Z_odot) dwarf galaxy SBS0335-052. We find the SED, optical properties and extinction of the star forming region to be consistent with a very young and compact starburst. We also predict the SED of another extremely low-metallicity galaxy, I Zw 18, for future observational tests. Some prospects for future observations are discussed.
The virial mass ($M_{rm vir}$)-metallicity relation among the Local Group dwarf spheroidal galaxies (dSphs) is examined. Hirashita, Takeuchi, & Tamura showed that the dSphs can be divided into two distinct classes with respect to the relation between their virial masses and luminosities: low-mass ($M_{rm vir} la 10^8 M_odot$) and high-mass ($M_{rm vir} ga 10^8 M_odot$) groups. We see that both the mass-metallicity and the mass-luminosity relations of the high-mass dSphs are understood as a low-mass extension of giant ellipticals. On the contrary, we find that the classical galactic-wind model is problematic to apply to the low-mass dSphs, whose low binding energy is comparable to that released by several supernova explosions. A strongly regulated star formation in their formation phase is required to reproduce their observed metallicity. Such regulation is naturally expected in a gas cloud with the primordial elemental abundance according to Nishi & Tashiro. A significant scatter in the mass-metallicity relation for the low-mass dSphs is also successfully explained along with the scenario of Hirashita and coworkers. We not only propose a new picture for a chemical enrichment of the dSphs, but also suggest that the mass-metallicity and the mass-luminosity relations be understood in a consistent context.
Recently reported infrared (IR) galaxy number counts and cosmic infrared background (CIRB) all suggest that galaxies have experienced a strong evolution sometime in their lifetime. We statistically estimate the galaxy evolution history from these dat a. We find that an order of magnitude increase of the far-infrared (FIR) luminosity at redshift z = 0.5 - 1.0 is necessary to reproduce the very high CIRB intensity at 140 um reported by Hauser et al. (1998). z sim 0.75 and decreases to, even at most, a factor of 10 toward z sim 5, though many variants are allowed within these constraints. This evolution history also satisfies the constraints from the galaxy number counts obtained by IRAS, ISO and, roughly, SCUBA. The rapid evolution of the comoving IR luminosity density required from the CIRB well reproduces the very steep slope of galaxy number counts obtained by ISO. We also estimate the cosmic star formation history (SFH) from the obtained FIR luminosity density, considering the effect of the metal enrichment in galaxies. The derived SFH increases steeply with redshift in 0 < z < 0.75, and becomes flat or even declines at z > 0.75. This is consistent with the SFH estimated from the reported ultraviolet luminosity density. In addition, we present the performance of the Japanese ASTRO-F FIR galaxy survey. We show the expected number counts in the survey. We also evaluate how large a sky area is necessary to derive a secure information of galaxy evolution up to z sim 1 from the survey, and find that at least 50 - 300 deg^2 is required.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا