ﻻ يوجد ملخص باللغة العربية
The virial mass ($M_{rm vir}$)-metallicity relation among the Local Group dwarf spheroidal galaxies (dSphs) is examined. Hirashita, Takeuchi, & Tamura showed that the dSphs can be divided into two distinct classes with respect to the relation between their virial masses and luminosities: low-mass ($M_{rm vir} la 10^8 M_odot$) and high-mass ($M_{rm vir} ga 10^8 M_odot$) groups. We see that both the mass-metallicity and the mass-luminosity relations of the high-mass dSphs are understood as a low-mass extension of giant ellipticals. On the contrary, we find that the classical galactic-wind model is problematic to apply to the low-mass dSphs, whose low binding energy is comparable to that released by several supernova explosions. A strongly regulated star formation in their formation phase is required to reproduce their observed metallicity. Such regulation is naturally expected in a gas cloud with the primordial elemental abundance according to Nishi & Tashiro. A significant scatter in the mass-metallicity relation for the low-mass dSphs is also successfully explained along with the scenario of Hirashita and coworkers. We not only propose a new picture for a chemical enrichment of the dSphs, but also suggest that the mass-metallicity and the mass-luminosity relations be understood in a consistent context.
We use fossil record techniques on the CALIFA sample to study how galaxies in the local universe have evolved in terms of their chemical content. We show how the metallicity and the mass-metallicity relation (MZR) evolve through time for the galaxies
Dwarf galaxies generally follow a mass-metallicity (MZ) relation, where more massive objects retain a larger fraction of heavy elements. Young tidal dwarf galaxies (TDGs), born in the tidal tails produced by interacting gas-rich galaxies, have been t
Here we study 16 planetary nebulae (PNe) in the dwarf irregular galaxy NGC 205 by using GMOS@Gemini spectra to derive their physical and chemical parameters. The chemical patterns and evolutionary tracks for 14 of our PNe suggest that there are no ty
We contend that a single power law halo mass distribution is appropriate for direct matching to the stellar masses of observed Local Group dwarf galaxies, allowing the determination of the slope of the stellar mass-halo mass relation for low mass gal
We study the shape of the gas-phase mass-metallicity relation (MZR) of a combined sample of present-day dwarf and high-mass star-forming galaxies using IZI, a Bayesian formalism for measuring chemical abundances presented in Blanc et al. 2015. We obs