ﻻ يوجد ملخص باللغة العربية
Dust grains can be efficiently accelerated and shattered in warm ionized medium (WIM) because of the turbulent motion. This effect is enhanced in starburst galaxies, where gas is ionized and turbulence is sustained by massive stars. Moreover, dust production by Type II supernovae (SNe II) can be efficient in starburst galaxies. In this paper, we examine the effect of shattering in WIM on the dust grains produced by SNe II. We find that although the grains ejected from SNe II are expected to be biased to large sizes ($aga 0.1 micron$, where $a$ is the grain radius) because of the shock destruction in supernova remnants, the shattering in WIM is efficient enough in $sim 5$ Myr to produce small grains if the metallicity is nearly solar or more. The production of small grains by shattering steepens the extinction curve. Thus, steepening of extinction curves by shattering should always be taken into account for the system where the metallicity is solar and the starburst age is typically larger than 5 Myr. These conditions may be satisfied not only in nearby starbursts but also in high redshift ($z>5$) quasars.
We investigate the properties of the galaxies that reionized the Universe and the history of cosmic reionization using the Evolution and Assembly of GaLaxies and their environments (EAGLE) cosmological hydrodynamical simulations. We obtain the evolut
The composition and amount of interstellar dust within gamma-ray burst (GRB) host galaxies is of key importance when addressing selection effects in the GRB redshift distribution, and when studying the properties of their host galaxies. As well as th
We critique the method of constructing extinction curves of lensing galaxies using multiply imaged QSOs. If one of the two QSO images is lightly reddened or if the dust along both sightlines has the same properties then the method works well and prod
We aim to identify and quantify the effects of the satellite distribution around a sample of galaxies in the Catalogue of Isolated Galaxies (CIG), as well as the effects of the Large Scale Structure (LSS) using the SDSS-DR9. To recover the physically
A starburst induced by a galaxy merger may create a relatively thin central stellar disk at radius $le 100$pc. We calculate the rate of tidal disruption events (TDEs) by the inspiraling secondary supermassive black (SMBH) through the disk. With a sma