ﻻ يوجد ملخص باللغة العربية
A recent data analysis of the far-infrared (FIR) map of the Galaxy and the Magellanic Clouds has shown that there is a tight correlation between two FIR colours: the 60 um-100 um and 100 um-140 um colours. This FIR colour relation called ``main correlation can be interpreted as indicative of a sequence of various interstellar radiation fields with a common FIR optical property of grains. In this paper, we constrain the FIR optical properties of grains by comparing the calculated FIR colours with the observational main correlation. We show that neither of the ``standard grain species (i.e. astronomical silicate and graphite grains) reproduces the main correlation. However, if the emissivity index at ~ 100--200 um is changed to ~ 1--1.5 (not ~ 2 as the above two species), the main correlation can be successfully explained. Thus, we propose that the FIR emissivity index is ~ 1--1.5 for the dust in the Galaxy and the Magellanic Clouds at ~ 100--200 um. We also consider the origin of the minor correlation called ``sub-correlation, which can be used to estimate the Galactic star formation rate.
We present results of our study of the infrared properties of massive stars in the Large and Small Magellanic Clouds, which are based on the Spitzer SAGE surveys of these galaxies. We have compiled catalogs of spectroscopically confirmed massive star
The data of 8,852 and 2,927 variable stars detected by OGLE survey in the Large and Small Magellanic Clouds are presented. They are cross-identified with the SIRIUS JHK survey data, and their infrared properties are discussed. Variable red giants are
We observed a sample of evolved stars in the Large and Small Magellanic Clouds (LMC and SMC) with the Infrared Spectrograph on the Spitzer Space Telescope. Comparing samples from the SMC, LMC, and the Galaxy reveals that the dust-production rate depe
Context: Infrared dark clouds are the coldest and densest portions of giant molecular clouds. The most massive ones represent some of the most likely birthplaces for the next generation of massive stars in the Milky Way. Because a strong mid-IR backg
We present ESO/VLT spectra in the 2.9-4.1 micron range for a large sample of infrared stars in the Small Magellanic Cloud (SMC), mainly carbon stars, massive oxygen-rich Asymptotic Giant Branch (AGB) stars, and red supergiants. Strong emission from P